K. S. R. M. College of Engineering - KADAPA (AUTONOMOUS) Honours Degree for B. Tech. – R20 Regulations

Department of Civil Engineering

List of Subjects for Honours Degree Course:

S. No.	Subject Code	SUBJECT	L	Т	Р	IM	EM	CR
1	2092101	Highway Construction and Management	4	0	0	40	60	4
2	2092102	Railway Engineering	4	0	0	40	60	4
3	2092103	Ground Improvement Techniques	4	0	0	40	60	4
4	2092104	Airport Planning and Design	4	0	0	40	60	4
5	2092105	Advanced Foundation Engineering	4	0	0	40	60	4
6	2092106	Soil Dynamics & Machine Foundation	4	0	0	40	60	4
7	2092107	Construction Project Planning & Systems	4	0	0	40	60	4
8	2092108	Finite Element Methods	4	0	0	40	60	4
9	2092109	Environmental Geo-Technology	4	0	0	40	60	4

Important Instructions:

- 1. Any four courses from above list can be selected by students.
- 2. The student can complete any two subjects under MOOC/NPTEL and approved by BOS Chairman.
- 3. Total Credits required to award Minor degree are 20. The four theory subjects must be completed, each subject carries 4 credits (total 16 credits) and two MOOC/NPTEL carries 4 credits.

K. S. R. M. College of Engineering - Kadapa

(AUTONOMOUS)

Honours Degree for R20UG Regulations

Electrical and Electronics Engineering (E.E.E)

List of Subjects for Honours Degree Course:

S.	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR
No.	Code	SUBJECT	sc	L	1	Г	1111	EW	СК
1	20HD201	Energy Auditing & Demand Side Management	PEC	4	0	0	40	60	4
2	20HD202	Power System Deregulation	PEC	4	0	0	40	60	4
3	20HD203	PLC & its Applications	PEC	4	0	0	40	60	4
4	20HD204	Embedded System	PEC	4	0	0	40	60	4
		MOOC Courses (Any Two)							
5	20HD205	Electric Vehicles	PEC	2	0	0	40	60	2
6	20HD206	Smart Grid	PEC	2	0	0	40	60	2
7	20HD207	Industrial Automation & Control	PEC	2	0	0	40	60	2
8	20HD208	SCADA & its Applications	PEC	2	0	0	40	60	2
9	20HD209	DC Micro Grid	PEC	2	0	0	40	60	2
								20	

** The Student will study any 6 subjects, four subjects each with 4 credits and two subjects through MOOC(SWAYAM/NPTEL) for 8weeks with 2 credits. So, the student should acquire 20 credits to get Honour's Degree.

K. S. R. M. College of Engineering - Kadapa

(AUTONOMOUS)

Honours Degree for R20UG Regulations

Department of Mechanical Engineering

List of Subjects for Honours Degree Course:

S.No	Course Title	No. Credits	Subject Code	Semester	L-T-P
1	Alternative Fuels and Emission Control in Auto motives	4	20HN301	V	4-0-0
2	Automation & Robotics	4	20HN302	V	4-0-0
3	Tool Design	4	20HN303	VI	4-0-0
4	Power Plant Engineering	4	20HN304	VI	4-0-0
5	Non Destructive Testing (NDT)	4	20HN305	VI	4-0-0
6	Ergonomics and Human Factors in Engineering	2	20HN306	VII	MOOC
7	Dynamics of machinery	2	20HN307	VII	MOOC
8	Solar and Wind Energy Systems	2	20HN308	VII	MOOC
9	Computational Fluid Dynamics (CFD)	2	20HN309	VII	MOOC
10	Six Sigma and Lean manufacturing	2	20HN310	VII	MOOC
11	Energy Auditing	2	20HN311	VII	MOOC

Important Instructions:

- 1. A total of 6 Subjects must be taken.
- 2. In the above 6 MOOC subjects, the student can select any two subjects under MOOC/NPTEL, the credits for the MOOC/NPTEL subject is two only.
- 3. Total Credits required to award Minor degree are 20. The four theory subjects must be completed, each subject carries 4 credits (total 16 credits) and two MOOC/NPTEL carries 4 credits.

K. S. R. M. College of Engineering - KADAPA

(AUTONOMOUS)

Honours Degree for B. Tech. – R20 Regulations

Department of Electronics and Communication Engineering

List of Subjects for Honours Degree Course:

S. No.	Subject Code	Subject	L	Т	Р	IM	EM	Credits
1	2092401	Scientific Computing using MATLAB	4	0	0	40	60	4
2	2092402	Computer System Architecture	4	0	0	40	60	4
3	2092403	Electromagnetic Interference & Compatibility	4	0	0	40	60	4
4	2092404	Analog IC Design	4	0	0	40	60	4
5	2092405	Digital IC Design	4	0	0	40	60	4
6	2092406	Biomedical Signal Processing	4	0	0	40	60	4
7	2092407	Embedded System Design with ARM	4	0	0	40	60	4
8	2092408	Information Theory &Coding	4	0	0	40	60	4
9	2092409	DSP Algorithms & Architectures	4	0	0	40	60	4
10	2092410	Low Power VLSI Design	4	0	0	40	60	4
11	2092411	RF Integrated Circuits	4	0	0	40	60	4
12	2092412	Principles of Signal Estimation for MIMO/ OFDM Wireless Communication	4	0	0	40	60	4
13	2092413	Statistical Signal Processing	4	0	0	40	60	4
14	2092414	Op-Amp Practical Applications: Design, Simulation and Implementation	4	0	0	40	60	4
15	2092415	Multirate DSP	4	0	0	40	60	4
16	2092416	Digital VLSI Testing	4	0	0	40	60	4

Any Four courses from the list given and two MOOC courses each of two credits and approved by BOS chairman are required to complete for Honor Degree

K. S. R. M. College of Engineering - KADAPA

(AUTONOMOUS)

Honours Degree for B. Tech. – R20 Regulations

Department of Computer Science Engineering

List of Subjects for Honours Degree Course:

S.No	Subject	Subject Name	Semester	L-T-P	Credits
	Code				
1	2092501	Data Science	V Sem	4-0-0	4
2	2092502	Computer Architecture and organization	V Sem	4-0-0	4
3	2092503	Applied Machine learning in Python	VI Sem	4-0-0	4
4	2092504	Deep Learning	VI Sem	4-0-0	4
5	2092505	Introduction to Block chain Technologies	VII Sem	MOOC	2
		and Applications			
6	2092506	Big Data and Hadoop	VII Sem	MOOC	2
7	2092507	Introduction to Industry 4.0 and	VII Sem	MOOC	2
		Industrial IOT			
8	2092508	Design and Implementation of Human	VII Sem	MOOC	2
		Computer Interfaces			
9	2092509	Reinforcement Learning	VII Sem	MOOC	2
10	2092510	Ethical Hacking	VII Sem	MOOC	2

Important Instructions:

- 1. A total of 6 Subjects must be taken.
- 2. In the above 3 MOOC subjects, the student can select any two subjects under MOOC/NPTEL, the credits for the MOOC/NPTEL subject is two only.
- 3. Total Credits required to award Honours degree are 20. The four theory subjects must be completed, each subject carries 4 credits (total 16 credits) and two MOOC/NPTEL carries 4 credits.

K. S. R. M. College of Engineering - KADAPA

(AUTONOMOUS)

Honours Degree for B. Tech. – R20 Regulations

Department of Artificial Intelligence & Machine Learning

List of Honor Degree Subjects:

S.No.	Course	Course Name	Semester		Iour r Wo		IM	EM	Credits	
	Code				Τ	Р	40	60		
1	20923901	Applied Machine Learning in Python	V Sem	4	0	0	40	60	4	
2	20923902	Intelligent Agents	V Sem	4	0	0	40	60	4	
3	20923903	Business Intelligence	VI Sem	4	0	0	40	60	4	
4	20923904	Design Patterns	VI Sem	4	0	0	40	60	4	
5	20923905	Information Theory and Coding	VII Sem	MOOC				2		
6	20923906	Information Retrieval Systems	VII Sem	MOOC				2		
7	20923907	Machine Translation	VII Sem	MOOC				2		
8	20923908	Introduction to Industry 4.0 and Industrial IOT	VII Sem	MOOC				2		
9	20923909	Big Data and Hadoop	VII Sem	MOOC				2		
10	20923910	Federated Machine Learning	VII Sem	Ν	100	C			2	

Note: Students can do any two MOOC from the list given above.

Course Title	High	Highway Construction and ManagementB. Tech. Honours Degree Course									
Course Code	Ho	ours / Wee	k	Credits	Maximum N	Maximum Marks					
2092101	L	Т	Р	C	Continuous Internal Assessment						
	4	0	0	4	40	40 60 1					
Ν	/lid Exam	Duration	: 1.5Hrs		End Exam Durat	tion : 3Hr	'S				
	s and ceme	ent concre	te constr	-	t the knowledge in highvoortance of drainage syst	•					
Course Ou	itcomes: (On success	ful comp	letion of th	is course, the students w	ill be able	to				

CO 1	Demonstrate the components of highway construction and its types
CO 2	Design bituminous pavement construction and its Specifications.
CO 3	Identify the importance of drainage systems and erosion control.
CO 4	Do structural evaluation of Flexible pavements.
CO 5	Describe the benefits, economic analysis and financing system in India.

<u>UNIT – I</u>

Highway Construction: General Features of highway construction- Embankment and subgrade construction-construction of Gravel Base- Cement stabilized sub base-WBM bases-Wet mix constructions- Shoulder Constructions.

<u>UNIT – II</u>

Bituminous pavement construction and cement concrete pavement construction

Preparation and laying of tack coat- Bituminous macadam- Penetration macadam- Built up spray Grout- Open Graded Premix- Mix seal- Bituminous concrete- Interface Treatments and overlay construction- IRC Specifications- Introducing mechanical mixers- Pavers- Finishers-Construction of Cement Roads- Manual and Mechanical methods- Joints in concrete and Reinforced concrete pavement and overlay construction- Related equipment.

<u>UNIT – III</u>

Highway Drainage: Objects of Highway drainage system- Requirements and Importance of Highway Drainage- Surface drainage system for Roads- Hydrologic Analysis- Hydraulic Design- Subsurface Drainage- Drainage and Slopes and erosion control- Road construction in water logged areas.

<u>UNIT – IV</u>

Highway Maintenance: Importance of Highway Maintainance works- Deterioration and damages in Road infrastructure- Maintainance requirement in different road components-Distresses in Flexible pavements and Maintainance measures- Structural Evaluation of Flexible pavements and Strengthening by overlay- Benkelman Beam Method.

<u>UNIT – V</u>

Highway Economics and Finance: Introduction- Highway User benefits- General benefits-Quantifiable Benefits- Non Quantifiable Benefits-Highway Costs- Motor Vehicle operation cost- Annual Highway cost- Economic Analysis-Basis of analysis- Method of economic analysis- Annual cost method- Rate of Return Method- Benefit cost Ratio method- Highway Finance- Distribution of Highway cost- Sources of Revenue for the government- Highway Financing in India- Central Road fund.

Text Books

1. S K Khanna, C E G Justo and A Veeraragavan "Highway Engineering", Nemchand Publications, New Delhi.

References

- 1. L R Kadiyali "Principles and Practice of Highway Engineering", Khanna Publishers, New Delhi.
- 2. Partha Chakroborthy, Animesh Das, "Principles of Transportation Engineering", Prentice Hall of India, New Delhi.
- 3. S P Bindra "Highway Engineering", Dhanpath Rai & Sons, NewDelhi.

Course Title	R	ailway Eng	gineerii	ng	B. Tech. Honours Degree	Course					
Course Code	H	ours/Week		Credits	Maximum M	arks					
2092102	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	4	0	0	4	40						
N	Mid Exam Duration : 1.5Hrs End Exam Duration : 3Hrs										
trac • To	ek. know cond	cepts related	d to sig	naling and	niques involved in construct controlling of train movements his course, the students will	ents on th	e track.				
CO 1	Understa	nd the com	ponents	of railway	track.						
CO 2	Know the	e dangers of	f creep a	and preven	tive measures in controlling	the cree	p.				
CO 3	Get the concepts of geometric design of track.										
CO 4	Understa	derstand points and crossings.									
CO 5		nderstand points and crossings. now the Signalling and controlling systems employed over movements of trains n the track.									

<u>UNIT –I</u>

Permanent way: Permanent way: Components – Railway Track Gauge - Cross Section of Permanent Way - Functions of various Components like Rails, Sleepers and Ballast

<u>UNIT - II</u>

Creep of Rails and Sleepers: Creep of Rails- Indications of creep - Theories related to creep - Effects - measurement and remedies of creep - Sleepers - requirements - Adzing of Sleepers- spacing of sleepers - Sleeper density - Rail Fastenings

<u>UNIT - III</u>

Geometric Design of Railway Track: Alignment – Engineering Surveys - Gradients- Grade Compensation- Cant and Negative Super elevation- Cant Deficiency – Speed of the train – Curves – necessity – Effects of curvature - Speed on curves - Degree of Curve – Types of curves – Transition curves – Length of transition curve.

<u>UNIT – IV</u>

Points and Crossings: Points and Crossings – Necessity – Turnouts – Left hand turnout – Right hand turnout – switches – crossings – sleepers at points and crossings.

<u>UNIT – V</u>

Signalling and Controlling: Signal Objectives – Classification – Fixed signals – Stop signals – Signalling systems – Mechanical Signalling system – Electrical signalling system – System for Controlling Train Movement – Interlocking – Modern signaling Installations.

Text Books:

- 1. S.C. Saxena and S.P. Arora "Railway Engineering", Dhanpat Rai Publications.
- 2. Rangwala "Railway Engineering" Charotar Publishing House Pvt. Ltd.

REFERENCE BOOKS

1. Sateesh Chandra "Railway Engineering" Oxford University Press.

Web Links:

1. <u>https://nptel.ac.in/courses/105107123</u>

Course Title	Groun	Ground Improvement Techniques B. Tech. Honours Degree Course			9							
Course Code	I	Hours/Wee	k	Credits	Maximum M	larks						
2092103	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total					
	4	0	0	4	40 60 100							
	Mid Exan	n Duration	: 1.5Hrs	_	End Exam Durat	ion : 3H	rs					
To learTo lear	n and unden n various r n various r n the meth	method of co	ompaction	for ground modification	nent technique. d improvement in its stre ion for ground improvem d or treatment method b	ient	the site					
Course Ou	utcomes: (On successfu	al complet	ion of this	course, the students will	be able t	Ō					
CO 1	Select the soil stren	•	nprovemer	nt techniqu	e which is suitable and	econom	ical for					
CO 2	Select dif	ferent techr	niques base	ed on the v	various types of soils in-s	itu						
CO 3	Design re	einforced ea	rth structu	res								

CO 4 Exposed to the knowledge on use of geosynthetic material

<u>UNIT – I</u>

In-situ densification methods in granular soils, Vibration at the ground surface, Impact at the Ground surface, Vibration at depth, Impact at depth. In-situ densification methods in cohesive soils, Preloading, Dewatering, Drain wells, Sand drains, Sandwich geodrains, Stone columns, Lime columns, Thermal methods.

<u>UNIT – II</u>

Reinforced earth principles, Components of reinforced earth walls, Factors governing design of reinforced earth walls, Design principles of reinforced earth walls.

<u>UNIT – III</u>

Geotextiles: Introduction, Type of geotextiles, Function and their application, tests for geotextile materials, Geogrids, Functions of geogrids. Expansive soils, Problems in Expansive soils, Mechanism of swelling, swell pressure, swell potential, Heave, Tests for

identification, I. S. Test Methods of determination of swell pressure, Foundation techniques in Expansive soils.

<u>UNIT – IV</u>

Mechanical stabilization: Soil aggregate mixtures, Properties and proportioning techniques, soft aggregate stabilization, compaction, Field compaction control. Cement stabilization: Mechanism-Factors affecting and properties, Uses of additives, Design of soil-cement mixtures, Construction techniques.

<u>UNIT – V</u>

Lime and Bituminous stabilization: Types of admixtures, Mechanism, Factors affecting, Design of mixtures, Construction methods.

Text Books:

- 1. Dr. P. Purushothama Raj., "Ground Improvement Techniques", Lakshmi Publications Pvt. Ltd.
- 2. Jones, J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1985.
- 3. Koerner, R.M. and Welsh, J.P., Construction and Geotechnical Engineering using Synthetic Fabrics, John Wiley, 1990.
- 4. Koerner, R.M., Designing with Geosynthetics (Third Edition), Prentice Hall, 1997.

Reference Books:

- 1. Moseley, M.D., Ground Treatment, Blackie Academic and Professional, 1998.
- 2. Hehn, R.W., Practical Guide to Grouting of Underground Structures, ASCE, 1996.
- Das, B.M., Principles of Foundation Engineering, (Fourth Edition). PWS Publishing, 1999

Web Links:

- 1. https://archive.nptel.ac.in/courses/105/105/105105210/
- 2. https://nptel.ac.in/courses/105108075

Course Title	Airpo	rt Plann	ing and	Design	B. Tech Honours Degre						
Course Code	Н	ours/We	ek	Credits	Maximum N	Aarks					
2092104	L	Т	Р	C	Continuous Internal Assessment	End Exam	Total				
	4	0	0	4	40	40 60 10					
Mid Exam Duration : 1.5HrsEnd Exam Duration : 3Hrs											
Course Object design, constr					urse is to expose the stud	lents to pl	lanning,				
Course Outco	o mes : On	success	ful comp	letion of th	nis course, the students w	ill be able	e to				
CO 1	Underst	and the i	mportan	ce of airpo	rt infrastructure planning	and desig	<u></u> gn				
CO 2	Identify	the facto	ors gover	ning desig	n of airport infrastructure	e e					
CO 3	Designi	Designing of taxi way.									
CO 4	Design	Design of visual aids for airport									
CO 5	Design	of airpor	t drainag	e							

<u>UNIT – I</u>

Airport planning: Objectives - Components, - Airport Classifications – Air transport Characteristics - various surfaces of airport - selection of site – Factors affecting the size of airport - Elements of Runway - Length of Run way, Case studies, Parking and Circulation Area.

<u>UNIT – II</u>

Airport Design: Airport layout - Wind rose diagram - Runway design - Geometric design of runways - Elements of Taxiway design - Airport Zones

<u>UNIT – III</u>

Taxiway Design: Taxiway Marking - Apron, Terminal Building - Passenger facilities, Air traffic control -primary functions of Air Traffic Control, Runway safety - Accidents due to wet runways.

<u>UNIT – IV</u>

Visual Aids: General - Airport lightening system, Airport marking, Instrumental landing system, blast considerations, Temperature.

<u>UNIT – V</u>

Airport Grading and Drainage: General – computation of Earth Work - Airport Drainage - Special characteristics and requirements of Airport Drainage.

Text Books

1. S K Khanna, M G Arora and S S Jain, "Airport Planning and Design", Nem Chand and Bros, Roorkee.

Reference Books

1. Rangwala, "Airport Engineering", Charotar Publishing House, Pvt. Ltd., Gujarat.

Web Links:

1. https://archive.nptel.ac.in/courses/105/107/105107123

Course Title	ŀ		d Founda ineering	tion		B. Tech. Honours Degree Course						
Course Code	E	Iours/W	eek	Credits	Maximum N	Marks						
2092105	L	Т	Р	C	Continuous Internal Assessment	End Exam	Total					
	4	0	0	4	40	60	100					
M	id Exam	Duratio	on: 1.5 Hr	s	End Exam Dura	tion : 3H	lrs					
To explaTo expla	in the co in the co in differ ul compl	oncepts of oncepts of ent metho etion of t	f collapsib ods of gro his course	le and expa und improv e, the studer	Iethods and individual consive soils and design of the ement techniques that will be able to bedment for sheet pile a	of founda	tions					
COT	anchor.		sign the de	epth of emb	bedment for sneet plie a	ind forces	s in the					
CO 2				rces on the coffer dam	struts and bending mo	oment in	Wells,					
CO 3	Analyz	e and des	sign well f	oundation i	ncluding complete stabi	lity analy	ysis					
CO 4	Determ	ine the s	well, uplif	t capacity,	and factor of safety							
CO 5	Importa	ance and	1:66:14:-		-							

<u>UNIT – I</u>

Bulkheads: Types of Sheet Pile Walls – Free Cantilever Sheet Pile – Cantilever Sheet Pile in Cohesionless and Cohesive Soils – Anchored Sheet Pile with Free Earth Support – Rowe's Moment Reduction Curves – Anchored Sheet Pile with Fixed Earth Support – Design of Anchors

<u>UNIT – II</u>

Braced Cuts and Coffer Dams: Introduction – Lateral Earth Pressure on Sheeting's – Different Types of Sheeting and Bracing Systems – Design of Various Components of Bracings.

Coffer Dams – Types of Coffer Dams – Design of Circular Coffer Dams on Rock – Design of Cellular Coffer Dams on Soil.

<u>UNIT – III</u>

Well Foundations: Introduction – Different Shapes of Wells – Grip Length – Forces Acting on the Well Foundation – Terzaghi's Analysis – Banerjee and Gangopadhyay's Analysis – Simplified Analysis for Heavy Wells – IRC Method – Individual Components of the Well – Sinking of Wells – Measures for rectification of Tilts and Shifts.

<u>UNIT – IV</u>

Foundations on Collapsible and Expansive Soils

Collapsible Soils – General Considerations and observations – Computation of Collapse Potential and Settlement – Foundation Design – Treatment Methods.

Expansive Soils – Distribution of Expansive Soils – General Characteristics – Clay Mineralogy and Mechanism of Swelling – Definition of Some Parameters – Evaluation of Swelling Potential of Expansive Soils – Classification of Swelling Soils by Indirect Measurement – Swelling Pressure by Direct Measurements – Effect of Initial Moisture Content and initial Dry Density on Swelling Pressure – Estimating the Magnitude of Swelling – Design of Foundations in Swelling Soils – Elimination of Swelling.

<u>UNIT – V</u>

Soil Stabilization: Introduction – Mechanical Stabilization – Cement Stabilization – Lime Stabilization – Bituminous Stabilization – Chemical Stabilization – Thermal Stabilization – Electrical Stabilization, Stabilization by Grouting – Stabilization by Geo-Textile and Fabrics – Reinforced Earth.

Text Books

- 1. Dr. K R Arora "Soil Mechanics & Foundation Engineering", Standard Publishers Distributers, New Delhi.
- 2. V N S Murthy "Advanced Foundation Engineering", C B S Publishers & Distributors, New Delhi.

Reference Books

- 1. Joseph E. Bowles "Foundation analysis & Design", Tata McGraw-Hill Companies, Inc. New York.
- 2. Braja M Das "Principles of Foundation Engineering", Thomson Publishers, United States.
- 3. Dr. P Purushothama Raj "Ground Improvement Techniques", Lakshmi Publications, New Delhi.

Web Links:

1. https://archive.nptel.ac.in/courses/105/105/105105207/

Course Title	So	il Dynami Foun	cs & Mae dation	chine	B. Tech. Honours Degree Course				
Course Code	Н	ours/Wee	k	Credits	Maximum Marks				
2092106	L	T P C Continuous Inter Assessment				End Exam	Total		
	4	0	0	4	40	60	100		
Mid Exam Duration: 1.5 HrsEnd Exam Duration : 3Hrs									
 To expl To expl machine To expl 	ain theory lain the p es ain the co	of vibration principles of ncept and n	on for diff of machin method of	ferent field one foundation	on design for reciprocat		impact		
CO 1	Analyse anchor.	and desig	n the dep	oth of embe	dment for sheet pile ar	nd forces	in the		
CO 2		the load coffer dar		on the struts	s and bending moment in	n sheet pi	les and		
CO 3	Analyse	and design	well fou	ndation inclu	uding complete stability	analysis			
CO 4	Determin	ne the swel	l, uplift c	apacity, and	factor of safety				
CO 5	Importan	ce and diff	ficulties i	n stabilizatio	on				

<u>UNIT - I</u>

Introduction - nature of dynamic loads - stress conditions on soil elements under earthquake loading - dynamic loads imposed by simple crank mechanism - type of machine foundations - special considerations for design of machine foundations.

<u>UNIT – II</u>

Theory of vibration: general definitions - properties of harmonic motion - free vibrations of a mass- spring system - free vibrations with viscous damping - forced vibrations with viscous damping - frequency dependent exciting force - systems under transient forces - Raleigh's method - logarithmic decrement - determination of viscous damping - principle of vibration measuring instruments - systems with two degrees of freedom.

<u>UNIT – III</u>

Criteria for a satisfactory machine foundation - permissible amplitude of vibration for different type of machines - methods of analysis of machine foundations - methods based on linear elastic weightless springs - methods based on linear theory of elasticity (elastic half space theory) - methods based on semi graphical approach - degrees of freedom of a block foundation - definition of soil spring constants - nature of damping - geometric and internal damping - determination of soil constants – methods of determination of soil constants in laboratory and field based on IS code provisions.

<u>UNIT – IV</u>

Vertical, sliding, rocking, and yawing vibrations of a block foundation - simultaneous rocking, sliding and vertical vibrations of a block foundation - foundation of reciprocating machines - design criteria - calculation of induced forces and moments - multi-cylinder engines - numerical example (IS code method).

<u>UNIT – V</u>

Foundations subjected to impact loads - design criteria - analysis of vertical vibrations - computation of dynamic forces - design of hammer foundations (IS code method) - vibration isolation - active and passive isolation - transmissibility - methods of isolation in machine foundations.

Text Books

1. Shamsher Prakash, Soil Dynamics, McGraw-Hill, 1981.

Reference Books

- 1. Alexander Major, Dynamics in Soil Engineering, A Kademiai, 1980.
- 2. Sreenivasalu and Varadarajan, Handbook of Machine Foundations, Tata McGraw-Hill, 2007.
- 3. IS 2974 Part I and II, Design Considerations for Machine Foundations
- 4. IS 5249: Method of Test for Determination of Dynamic Properties of Soils

Web Links:

- 1. https://nptel.ac.in/courses/105101005
- 2. https://archive.nptel.ac.in/courses/105/105/105105221/

Course Title	Const		Project Pl ystems	anning &	B. Tech. Honours Degree Course			
Course Code	Н	ours/We	eek	Credits	Maximum Marks			
2092107	L	Т	Р	C	Continuous Internal Assessment	End Exam	Total	
	4	0	0	4	40	60	100	
Ν	Mid Exa	m Durat	ion: 1.5H	End Exam Duration : 3Hrs				

Course Objectives:

- Understand the importance of construction management, resources and stages of Planning
- To know how to prepare scheduling in construction activity. significance of PERT and CPM and make use of these two techniques how to develop a network diagram for construction
- To know various types of equipment in construction and applications mechanisation in construction
- Understand importance of inspection and how to maintain quality in different stages. Recognize the Importance of safety measures in construction
- To know the importance of contractual system and carefulness in legal issues during and after the construction.

On succes	On successful completion of this course, the students will be able to								
CO 1	Broad View on construction before and after execution								
CO 2	pertize on scheduling of construction with latest techniques								
CO 3	Inderstand the benefit and productivity of mechanization in construction								
CO 4	Know the value of quality and safety in construction								
CO 5	Aware of contractual system and enlarged view on legal problems in construction								

<u>UNIT – I</u>

Introduction: History of Construction Management, Functions and Responsibilities of Construction Manager, Resources and Advances in Construction Management. Stages and Major problems in Construction Industry.

<u>UNIT – II</u>

New Techniques in construction Management: Work Breakdown of structures, Development of Bar charts, Shortcomings, Remedial measures, Milestone charts. PERT- Elements of

Networks, Development of PERT network, Numbering, Fulkerson's rule, Slack, Identification of Critical Path, Probability of Completion of projects. CPM – Construction of network, Start and Finish times of activities, Floats, Identification of Critical Path using floats.

<u>UNIT – III</u>

Construction Equipment and Management. Equipment Requirements in Construction Industry, Heavy Earth Moving Equipment – Bulldozers, Scrapers, Loaders Shovels and Cranes – Compaction Equipment, Grading Equipment, Aggregate Production Equipment, Hauling Equipment, Concrete Mixing Equipment, Pneumatic Equipment, Bridge Construction Equipment, Drilling and Blasting Equipment, Pumping and Dewatering Equipment.

<u>UNIT – IV</u>

Inspection and Quality Control and safety management. Inspection and Quality Control: Need for Inspection and Quality Control Principles of Inspection – Enforcement of Specifications – Stages of Inspection and Quality Control. Safety Management: Safety importance in construction industry, hazards in construction projects, causes of accidents, cost of an accidents.

<u>UNIT – V</u>

Contracts and Legal issues: Contracts: Execution of Works, Direct execution by Department, Execution through contractor – Definitions – Types of contracts. Legal Issues: Earnest money deposit and Security deposit, Termination of contract. Disputes, Settlement through arbitration,

Indian Arbitration Act 1940, Clauses and advantages of arbitration, Contract Labor Act 1970, Minimum Wages Act 1948, Workmen Compensation Act 1923

Text Books

- 1. P S Gahlot and B M Dhir "Engineering Construction Planning and Management", New Age International (P) Limited, Publishers, New Delhi.
- 2. S C Sharma "Construction Equipment and Its Management", Khanna Publishers, New Delhi.

Reference Books

- 1. M Govindarajan, S Natarajan and V S Senthilkumar "Engineering Ethics", Prentice-Hall of India (P) Limited, New Delhi.
- 2. Dr. S Seetharaman "Construction Engineering and Management", Umesh Publications, New Delhi.
- 3. Horpal Singh "Construction Management and Accounts", Tata McGraw-Hill Companies, Inc. New York.

Web Links:

- 1. https://archive.nptel.ac.in/courses/105/104/105104161/
- 2. https://archive.nptel.ac.in/courses/105/103/105103093/

Course Title	Finite	e Elemo	ent Me	thods	B. Tech. Honours Degree Course				
Course Code	Hou	rs/Wee	k	Credits	Maximum Marks				
2092108	L	Т	Р			End Exam	Total		
	4	0	0	4	40	60	100		
Mid Exam Duration: 1.5 HrsEnd Exam Duration : 3Hrs									
structures.	id the conc	•			ethods to analyze critical s	stress cond	litions in		
CO 1	Understar	nd the fu	undame	entals of the	e Finite Element Methods.				
CO 2	Derive Fin elements.	nite Ele	ement F	Formulation	for one dimensional bean	n and bar			
CO 3	Apply two	o dimer	nsional	elements fo	or analysis of structures.				
CO 4	Understar Methods.	nd isope	erimetri	c elements	and its applications in Fin	ite Elemer	nt		
CO5	Analyse v Methods.	various	structu	res for stati	c loading conditions using	; Finite Ele	ment		

<u>UNIT - I</u>

Introduction to Finite Element Method- Introduction - Finite Difference Method - Advantages and Disadvantages - Basic Steps – Limitations - Finite Element Modelling and Discretization - Types of Elements - Nodes and Degrees of Freedom - Interpolation and Shape Functions

<u>UNIT – II</u>

One Dimensional & Two-Dimensional Elements- Stiffness matrix for bar element – shape functions for one dimensional element – one dimensional problem. Two Dimensional Elements - Different types of elements for plane stress and plane strain analysis – Displacement models – generalized coordinates – shape functions – convergent and compatibility requirements – Geometric invariance – Natural coordinate system – area and volume coordinates

<u>UNIT - III</u>

Trusses-Plane Trusses - Local and Global Coordinate Systems - Direction Cosines - Element Stiffness Matrix - Assembly of Global Stiffness Matrix - Stress Calculation.

<u>UNIT - IV</u>

Beams- Introduction Beam Stiffness - Assembly of Beam Stiffness Matrix – Loading - Boundary Conditions - Plane Stress - Plane Strain Analysis

<u>UNIT - V</u>

Iso-parametric Elements and Finite Element Modelling- Mesh Requirements - Material Properties - Loads and Reactions - Boundary Conditions - Checking the Model - Analysis and Design Software (For Practice Purpose Only)

Solution Techniques: Numerical Integration, Static condensation, assembly of elements and solution techniques for static loads.

Text Books

- 1. Daryl L Logan "A First Course in the Finite Element Method", Cengage Learning India Private Limited, New Delhi.
- 2. S S Bhavikatti "Finite Element Analysis", New Age International (P) Limited, Publishers, New Delhi.

Reference Books

- 1. Robert D Cook, David S Malkus and Michael E Plesha "Concepts and Applications of Finite Element Analysis", Wiley India Pvt. Limited, New Delhi.
- 2. George R Buchanan "Theory and Problems of Finite Element Analysis", Tata McGraw-Hill Companies, Inc. New York.

Web Links:

- 1. https://onlinecourses.nptel.ac.in/noc22_me43/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104193/

Course Title	Envir	onmental C	eo-Tech	nology	B. Tech. Honours Degree Course				
Course Code	I	Hours/Week			Maximum N	larks			
2092109	L	Т	Р	С	Continuous Internal AssessmentEnd Exam				
	4	0	0	4	40	60	100		
Mid Exam Duration: 2 HrsEnd Exam Duration : 3Hrs									
 To give To anal To ma constru 	e awarenes yze and ag ke the stu ctions.	s about the a oply various udent to u	adverse ef technique nderstand	ffects of so es for reme the reuse	pollutants on soil proper il and ground water cont ediation of the contamina e of waste materials i will be able to	taminant ants			
CO 1	Understa				er distributing resources	such as	energy		
CO 2	Understa	nding of the	microgri	d types an	d configurations				
CO 3		ons of pow			icro grid and acquire the	e knowle	edge of		
CO 4	Analyze	the variou	s types o	of control	in micro grid in isla	nded an	d grid		

<u>UNIT – I</u>

connected operation

Introduction: Industrialization and Urbanization, Pollution, Control, and remediation.

Contamination: Surface contamination, Contamination transport, Soil-a Geotechnical trap, Effect of subsurface contamination, Detection of polluted zone, Monitoring and Effectiveness of designed facilities.

<u>UNIT – II</u>

Contaminants of Solid Waste in Landfills: Waste contaminants, landfills, types, shape, and size of landfills. Liner and liner system, Cover and cover system, Stability of landfills. Landfill construction & operation, sustainable waste management.

<u>UNIT – III</u>

Contaminants of Slurry wastes: Slurry transported wastes, slurry ponds, operation, Embankment construction and raising, Design aspects, Environmental Impact, and control.

<u>UNIT – IV</u>

Vertical Barriers for Contaminant: Contaminated sites, Types of barriers, Soil-Bentonite slurry trench walls, Cement-Bentonite slurry trench walls, construction, material, and design aspects.

<u>UNIT – V</u>

Geotechnical Reuse of Waste materials: Waste reduction, use in geotechnical construction, waste characteristics, transportation consideration, engineering properties of Wastes, Waste material in Embankment and Fills.

Text Books

- 1. 1.Lakshmi N. Reddi and Hilary I. Inyang, "Geoenvironmental Engineering: Principles and Applications", CRC Press, United States.
- 2. Hari D. Sharma and Krishna R. Reddy, "Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies", John Wiley and Sons, Inc., United States.

Reference Books

- 1. 1.David E. Daniel, "Geotechnical Practice for Waste Disposal", Chapman & Hall, Springer Publishers, Germany.
- 2. Rowe R. Kerry, "Geotechnical and Geoenvironmental Engineering Handbook", Springer Publishers, Germany.
- 3. Proceedings of the International symposium of Environmental Geotechnology (Vol. I and II), Environmental Publishing Company, 1986 and 1989.
- 4. ASTM Special Technical Publication 874, Hydraulic Barrier in Soil and Rock, 1985.

Web Links:

- 1. https://nptel.ac.in/courses/105102160
- 2. https://archive.nptel.ac.in/courses/105/102/105102160/

Course Title	Energy Aud M	iting [anag			nd Side	B. Tech. Honours Degree Course				
Course Code	Category	Hou Wee	ırs / ek		Credits	Maximum Marks				
20HD201	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	Core (PEC)	4	1	0	4	40	60	100		
Mid Exam Duration: 2Hrs End Exam Duration : 3Hrs										
conservatio	•	feren	t me	ethods	to impro	b learn about energy audition of the second se	• •			
Course Ou	itcomes: On suc	cessf	ul co	mplet	ion of this	course, the students will	be able	to		
CO 1	Understand en economics and			-	practices,	energy conservation sc	hemes,	energy		
CO 2		Analyze energy conservation measures, energy auditing practices, energy economics and management								
CO 3	Design an ap industrial appli			ener	gy conset	rvation scheme for co	mmercia	al and		

CO 4 Choose appropriate technique for energy auditing and conservation.

<u>UNIT – I</u>

Energy Auditing: Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, sankey diagrams, load profiles, energy conservation schemes. measurements in energy audits, presentation of energy audit results.

<u>UNIT - II</u>

Energy Efficient Motors: Energy efficient motors, constructional details, loss distribution, factors affecting efficiency, characteristics - variable speed, variable duty cycle systems, RMS HP loading- voltage variation-voltage unbalance- over motoring- motor energy audit.

<u>UNIT – III</u>

Power Factor Improvement: Power Factor – methods of improvement, location of capacitors, pf with non linear loads, effect of harmonics on pf, pf motor controllers.

<u>UNIT – IV</u>

Lighting and Energy Instruments: Good lighting system design and practice, lighting control ,lighting energy audit - energy instruments- watt meter, data loggers, thermocouples, pyrometers, lux meters, tongue testers ,application of PLC's.

<u>UNIT – V</u>

Demand Side Management:Introduction to DSM, concept of DSM, benefits of DSM, different techniques of DSM – time of day pricing, multi-utility power exchange model, time of day models for planning.

Load Management: Load priority technique, peak clipping, peak shifting, valley filling, strategic conservation, energy efficient equipment. management and organization of energy conservation awareness programs.

Text Books

- 1. Electrical Power distribution by A. S. Pabla, TMH, 5th edition, 2004.
- 2. Energy management by W.R. Murphy & G. Mckay Butter worth, Heinemann publications.
- 3. Energy management hand book by W. C. Turner, John Wiley and Sons.
- Energy management by Paul o' Callaghan, Mc-graw Hill Book company-1st edition, 1998.

References

- 1. Energy efficient electric motors by John. C. Andreas, Marcel Dekker Inc Ltd., 2nd Edition, 1995.
- 2. Energy management and good lighting practice: Fuel Efficiency- Booklet12 EEO.
- 3. Recent Advances in Control and Management of Energy Systems by D. P. Sen, K. R. Padiyar, Indrane Sen, M. A. Pai, Interline Publisher, Bangalore, 1993.
- 4. Energy Demand Analysis, Management and Conservation, Ashok V. Desai, Wiley Eastern, 2005.

Course Title	Power Sys	stem	Dere	gula	tion	B. Tech. Honours Degree Course			
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks			
20HD202	Professional Elective	L T P		Р	С	Continuous Internal AssessmentEnd Example	End Exam	Total	
	(PEC)	4	0	0	4	40	60	100	
Mid Exam Duration : 2Hrs End Exam Duration : 3Hrs									
restructurir	ng of the electr market and und	icity	mark	ket, r	need behin	ourse is to learn the band requirement for dere er & information flow i	gulation	of the	
Course Ou	itcomes: On succ	cessfi	ıl cor	nplet	ion of this	course, the students will	be able to	0	
CO 1	Understand vari	ious t	ypes	of reg	gulations i	n power systems.			
CO 2	Identify the nee	d of 1	egula	tion	and dereg	lation.			
CO 3	Analyze the tec	hnica	l and	Non	-technical	issues in Deregulated Pov	wer Indus	stry.	
CO 4	Identify and giv	e exa	mple	s of e	existing ele	ectricity markets.			
CO 5	Classify differe in the market	nt ma	arket	mecł	nanisms ar	nd summarize the role of	various	entities	

<u>UNIT - I</u>

Deregulation of Electric Utilities: Introduction – Traditional central utility model, reform motivations, separation of ownership and operation, competition and direct access in the electricity market, independent system operator (ISO), retail electric providers, different experiences.

<u>UNIT - II</u>

Competitive Wholesale Electricity Markets & Transmission Open Access: Introduction, ISO, wholesale electricity market characteristics, market model, challenges, trading arrangements, the pool and bilateral trades, multi lateral trades.

<u>UNIT - III</u>

Transmission Cost Allocation Methods: Introduction - Postage Stamp Rate Method - Contract Path Method - MW-Mile Method – Unused Transmission Capacity Method - MVA-Mile method – Comparison of cost allocation methods.

<u>UNIT - IV</u>

Market Power & Ancillary Services Management: Introduction - Different types of market Power – Mitigation of Market Power – Examples - Introduction – Reactive Power as an Ancillary Service – a Review – Synchronous Generators as Ancillary Service Providers.

<u>UNIT - V</u>

Available Transfer Capability (ATC) : Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow - Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves – Short-time Price Forecasting.

Text Books:

- 1. Power System Restructuring and Deregulation, Loi Lei Lai, John Wiley & Sons Ltd., England, 2001.
- 2. Operation of Restructured Power System, Kankar Bhattacharya, Math H.J. Boller and Jaap E. Daalder Kulwer Academic Publishers, 2001.
- 3. Restructured Electrical Power Systems, Mohammad Shahidehpour and Muwaffaq alomoush, Marcel Dekker, Inc., 2001.

Course Title	Programma (PLC) &		U			B. Tech. Honours Degree Course			
Course Code	Category	Hours/Week C			Credits	Maximum N	Maximum Marks		
20HD203	D203 Professional (PEC)	L	Т	ТР		Continuous Internal Assessment	End Exam	Total	
		4	0	0	4	40	60	100	
Mid Exam Duration : 2HrsEnd Exam Duration : 3Hrs									
programmi	•	logic	•			rse is to learn PLC basi rs, functions and Analog			
Course Ou	itcomes: On succ	cessfu	ıl cor	npleti	ion of this	course, the students will	be able t	0	
CO 1	Understand PLC	C and	its b	asics,	architectu	re, connecting devices a	nd progra	amming	
CO 2	Apply Ladder lo	ogic f	or va	rious	Industrial	Applications			
CO 3	Analyze PLC lo	gical	and	arithr	netic opera	ations			
CO 4	Design Control	Circu	uits fo	or var	ious Appli	ications			

<u>UNIT - I</u>

PLC Basics: PLC system, I/O modules and interfacing, CPU processor, programming Equipment, programming formats, construction of PLC ladder diagrams, Devices connected to I/O modules.

PLC Programming: Input instructions, outputs, operational procedures, programming examples using contacts and coils. Drill press operation.

<u>UNIT - II</u>

Digital Logic Gates: Programming in the Boolean algebra system, conversion examples. Ladder Diagrams for process control: Ladder diagrams & sequence listings, ladder diagram construction and flowchart for spray process system.

UNIT - III

PLC Registers: Characteristics of Registers, module addressing, holding registers, Input Registers, Output Registers.

PLC Functions: Timer functions & Industrial applications, counter function & industrial applications, Arithmetic functions, Number comparison functions, number conversion functions.

<u>UNIT - IV</u>

Data Handling Functions: SKIP, Master control Relay, Jump, Move, FIFO, FAL, ONS, CLR & Sweep functions and their applications. Bit Pattern and changing a bit shift register, sequence functions and applications, controlling of two-axis & three axis Robots with PLC, Matrix functions.

UNIT - V

Analog PLC Operation: Types of PLC Analog Modules and Systems, PLC Analog Signal Processing, BCD or Multibit Data Processing, Analog output application examples, PID Modules, PID Tuning, Typical PID Functions, PLC Installation, Troubleshooting and Maintenance.

Text Books:

- 1. Programmable Logic Controllers by W. Bolton, 5th Edition, Newnes, Elsevier, 2010.
- 2. Programmable Logic Controllers- Principles and Applications by John W. Webb & Ronald A. Reiss, Fifth Edition, PHI.

Reference Books:

- 1. Programmable Logic Controllers- Programming Method and Applications –JR. Hackworth & F.D Hackworth Jr. –Pearson, 2004.
- 2. Programmable Logic Controllers: An Emphasis on Design & Application, Kelvin T. Erickson, Dogwood Valley Press, 2011.

Course Title	Emb	edde	d Sys	stems	1	B. Tech. Honours Degree Course			
Course Code	Category	Hou	irs/W	eek	Credits	Maximum M	Maximum Marks		
20HD204	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(PEC)	4	0	0	4	40	60	100	
Mid Exam Duration: 2 HrsEnd Exam Duration : 3Hrs									
microcontr	•	nd its	s pro	gram	ming in a	e is to learn the basic ssembly language and a ons systems.		-	
On success	ful completion	of th	is cou	ırse, t	he student	ts will be able to			
CO 1						e general computing s embedded systems.	system a	nd the	
CO 2	Illustrate the b	oasic j	progr	amm	ing model	S			
CO 3	Design real tir	ne en	nbedo	led sy	ystems usi	ng the concepts of RTOS			
CO 4	Apply program	n mo	delin	g and	program	ning with RTOS - 2			

<u>UNIT - I</u>

Introduction: History of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Core of the Embedded System, Sensors and Actuators, Communication Interface, Embedded Firmware.

Hardware Software Co-Design and Programme Modelling: Characteristics of an Embedded System, Quality Attributes of Embedded Systems, Fundamental Issues in Hardware Software Co-Design, Computational Models in Embedded Design, Introduction to Unified Modeling Language (UML),Hardware Software Trade-offs.

<u>UNIT - II</u>

Real-Time Operating Systems (RTOS) Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling :Putting them Altogether, Task Communication, Task Synchronization, Device Drivers, How to Choose an RTOS.

<u>UNIT - III</u>

Devices and Communication Buses for Devices Network: IO Types and Examples, Serial Communication Devices, Parallel Device Ports, Sophisticated Interfacing Features in Device Ports, Wireless Devices, Timer and Counting Devices, Watchdog Timer, Real Time Clock, Networked Embedded Systems, Serial Bus Communication Protocols, Parallel Bus Device Protocols- Parallel Communication Network Using ISA, PCI, PCI-X and Advanced Buses, Internet Enabled Systems- Network Protocols, Wireless and Mobile System Protocols.

<u>UNIT - IV</u>

Real Time Operating Systems: Process Management, Memory Management, Device, File and IO Subsystems Management, Interrupt Routines in RTOS Environment and Handling of Interrupt Source Calls, Real-time Operating Systems, Basic-Design an RTOS, RTOS Task Scheduling Models, Interrupt Latency and Response of the Tasks as Performance Matrices, OS Security Issues.

<u>UNIT - V</u>

Design Examples and Case Studies of Program Modeling and Programming With RTOS-2: Case study of Communication between Orchestra Robots, Embedded Systems in Automobile, Case study of an Embedded System for Adaptive Cruise Control(ACC) System in a Car, Case study of an Embedded System for a Smart Card, Case study of a Mobile Phone Software for Key Inputs.

Text Books

- 1. Introduction to Embedded System- Shibu KV, Mc-Graw Hill Higher Edition.
- 2. Embedded Systems Architecture, Programming and Design- Raj Kamal, Second Edition, McGraw-Hill Companies.
- 3. Embedded System Design by Peter Marwedel, Springer.

Reference Books

- 1. Embedded System Design A Unified Hardware/Software Introduction-Frank Vahid, Tony D. Givargis, John Wiley, 2002.
- 2. Embedded/ Real Time Systems-KVKK Prasad, Dreamtech Press, 2005.
- 3. An Embedded Software Primer- David E. Simon, Pearson Ed. 2005.

Course Title	Electric	& Hy	brid	Vehi	icles	B. Tech. Honours Degree Course			
Course Code	Category	Hours/Week Credits Maximum Marks							
20HD205 Ele	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(PEC)	2	0	0	2	40	60	100	
Mid Exam Duration : 2HrsEnd Exam Duration : 3Hrs									
			•			rse is to learn upcoming n & electric traction.	g technol	ogy of	
Course Out	tcomes: On suc	cessf	ul co	mplet	tion of this	s course, the students wil	l be able	to	
CO 1	Understand el	ectric	driv	e in v	vehicles / t	raction			
CO 2	Acquire knowledge about fundamental concepts, principles of hybrid and electric vehicles								
CO 3	Analyze and d	lesign	n of h	ybrid	and electr	ric vehicles			

<u>UNIT - I</u>

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics and mathematical models to describe vehicle performance.

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

<u>UNIT - II</u>

Hybrid Electric Drive-Trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-Trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

<u>UNIT - III</u>

Electric Propulsion Unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of

Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switched Reluctance Motor drives, drive system efficiency.

<u>UNIT - IV</u>

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

<u>UNIT - V</u>

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text Books

- 1. Hybrid Electric Vehicles: Principles and applications with Practical Perspectives by C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons, 2011.
- 2. Hybrid Electric Vehicles: Energy Management Strategies by S. Onori, L. Serrao and G. Rizzoni, Springer, 2015.

Reference Books

- 1. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design by Ehsani, Gao, Gay, Emadi, 2005 by CRC Press.
- 2. Electric and Hybrid Vehicles by T. Denton, Routledge, 2016.

Course Title	S	bmar	t Gri	d		B. Tech. Honours Degree Course				
Course Code	Category	Hours/Week			Credits	Maximum Marks				
20HD206	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PEC)	2	0	0	2	40	60	100		
	Mid Exam Duration: 2 Hrs End Exam Duration : 3Hrs									
	•					undamentals, Architectu measuring technologies		•		
On success	ful completion	of th	is cou	urse,	the studen	ts will be able to				
CO 1	Understand th grid	ie fea	atures	, fun	damental	components and archite	ecture of	f smart		
CO 2	Explain inform with the smart		on, co	ommu	inication	and networking technol	logies in	volved		
CO 3		Explain operation and importance of PMU, WAMPS and smart storage systems in smart grid								
CO 4	Analyze Micro	o gric	l with	ı vari	ous conce	pts and challenges in fut	ure			

<u>UNIT - 1</u>

Introduction to Smart Grid: Working definitions of Smart Grid and Associated Concepts – Need of Smart Grid – Smart Grid Functions – Opportunities & Barriers of Smart Grid - Conventional Power Grid and Smart Grid -Concept of Resilient & Self-Healing Grid.

<u>UNIT - II</u>

Smart Grid Architecture: Components and Architecture of Smart Grid – Review of Proposed Architectures for Smart Grid – The Fundamental Component of Smart Grid Designs – Transmission Automation – Distribution Automation –Renewable Integration.

<u>UNIT - III</u>

Information and Communication Technology: Smart sensors, Wired and wireless communication Technology, Network Structures (HAN, LAN, NAN, WAN), Introduction to Smart Meters – Advanced Metering Infrastructure (AMI).

<u>UNIT - IV</u>

Smart Grid Technologies: Geographic Information System (GIS) - Intelligent Electronic Devices (IED) - Smart storage like Battery- SMES - Pumped Hydro - Compressed Air Energy Storage - Wide Area Measurement System (WAMS) – SCADA - Phasor Measurement Unit (PMU).

<u>UNIT – V</u>

Micro grids and Distributed Energy Resources: Concept of micro grid, need & application of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid, Plastic & Organic solar cells, thin film solar cells, Variable speed wind generators, and fuel cells.

Text Books

- 1. Janaka Ekanayake, Kithsir iLiyanage, Jian zhong. Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012.
- 2. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press, 1e,2013.
- 3. James Momoh, "Smart Grid: Fundamentals of Design and Analysis"- Wiley, IEEE Press, 2012.

Reference Books

- 1. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 2. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House Publishers July 2011.
- 3. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.

Course Title	Industrial A	utoi	natio	n & (Control	B. Tech. Honours Degree Course						
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks						
20HD207	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	(PEC)	2	0	0	2	40						
Mid Exam Duration: 2 HrsEnd Exam Duration : 3Hrs								Irs				
Industries production work and provide ar	Industries rel n. It is importan the importance n opportunity to	ly h t for e of learr	eavily the s PLC, n indu	on tuden SCA strial	automati its to learr DA and automatio	_	ility and on, how s	d mass systems				
On succes	sful completion	of th	nis co	urse,	the studen	ts will be able to						
CO 1	Understand va	ariou	s auto	omati	on compo	nents and systems						
CO 2	Draw block diagram of industrial automation and control system											
CO 3	Explain archit	tectu	re of i	indus	trial auton	nation system						
CO 4	Measure indu speed, flow, lo		-			perature, pressure, force	e, displac	cement,				

Introduction: Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus systems: modbus & Profibus

<u>UNIT - II</u>

Automation components: Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

<u>UNIT – III</u>

Computer aided measurement and control systems: Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and

networking, Industrial communication systems, Data transfer techniques, Computer aided process control software and Computer based data acquisition system, Internet of things (IoT) for plant automation.

<u>UNIT –IV</u>

Programmable logic controllers: Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

<u>UNIT – V</u>

Distributed Control System: Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

Text Books

- 1. Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies
- 2. Process Control Instrumentation Technology By. C.D. Johnson, PHI
- 3. Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A.K. Deb, Jaico Publishing House, 2013
- 4. Programmable logic controller, Dunning, Delmar

- 1. Groover, Mikell. P: Automation, Production systems and Computer integrated Manufacturing –Prentice hall India-2004.
- Mark W Spong& M Vidyasagar: Robot Dynamics and Control, John Wiley & Sons, 1989
- 3. Robert J Schilling: Fundamentals of Robotics, Analysis and Control. Printice Hall of India 1996
- 4. R.K.Mittal and I.J. Nagarath: Robotics and Control, TMH-2003.

Course Title	SCADA	& Its	s App	olicat	ions	B. Tech. Honours Degree Course						
Course Code	Category	Ηοι	ırs/W	eek	Credits	Maximum M	farks					
20HD208	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	(PEC)	2	0	0	2	40						
	Mid Exam Du	ratio	n: 2 l	Hrs		End Exam Durat	ion : 3Hr	'S				
Course Ol	ojectives: The	stude	nt is a	able to	o understa	nd SCADA and its applic	ations.					
On success	ful completion	of th	is cou	urse,	the studen	ts will be able to						
CO 1	Describe the b their typical a				ipervisory	Control Systems (SCAD	A) as well	l as				
CO 2	Acquire know disadvantages	-				itecture, various advantag	ges and					
CO 3	-	-			•	em components: remote to /II systems, SCADA serve		nits,				
CO 4	-	-				munication, various indus dard communication prote						
CO5	Learn and und distribution se				-	plications in transmission	and					
CO6	Gain knowled SCADA syste	-	id und	dersta	anding for	the design and implement	tation of a	l				

Introduction to SCADA: Data acquisition systems, Evolution of SCADA, Communication technologies, Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries

<u>UNIT - II</u>

SCADA System Components: Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED), Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems

SCADA Architecture: Various SCADA architectures, advantages and disadvantages of each system - single unified standard architecture -IEC 61850

<u>UNIT - IV</u>

SCADA Communication: Various industrial communication technologies -wired and wireless methods and fiber optics. Open standard communication protocols

<u>UNIT - V</u>

SCADA Applications: Utility applications- Transmission and Distribution sector - operations, monitoring, analysis and improvement. Industries - oil, gas and water.

Text Books

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA,2004.
- 2. Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford, UK,2004.

- 1. William T. Shaw, Cyber security for SCADA systems, PennWell Books, 2006.
- 2. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003.
- 3. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric power, PennWell 1999.

Course Title	Distributed	Gen Gr		on &	Micro	B. Tech. Honours Degree Course					
Course Code	Category	Hou	Hours/Week Credit			Maximum Marks					
20HD209	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	ssessment Exam				
	(PEC)	2	0	0	2	40 60 10					
Mid Exam Duration: 2 Hrs End Exam Duration : 3Hrs											
energy stor developme	age devices and nt and relevant i	l Mic ssues	ro gri	id sys	stems and	bout different distribute Understanding the cond	•				
CO 1	ful completion of Understand the storage and fue	e sync	chron			er distributing resources	such as	energy			
CO 2	Understanding	of th	e mic	rogrie	d types and	1 configurations					
CO 3		Applications of power electronics in Micro grid and acquire the knowledge of multifunction grid connected converters									
CO 4	Analyze the v connected oper		• •	pes c	of control	in micro grid in isla	nded an	d grid			

Introduction to Distributed Generation: DG Units - Micro turbines, reciprocating engines, wind generators, photovoltaic generators, fuel cells, biomass, and tidal sources - Need for Distributed generation, renewable sources in distributed generation, current scenario in Distributed Generation, Planning of DGs – Sitting and sizing of DGs – optimal placement of DG sources in distribution systems.

<u>UNIT - II</u>

Grid integration of DGs: Synchronization - Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units - Distributed resources to electric power systems: IEEE 1547. Energy storage elements: Batteries, ultracapacitors, flywheels.

Economics and Regulatory Aspects of DGs: Selection of sources, regulatory standards/ framework, Standards for interconnecting DG installation classes, security issues in DG implementations. Economic and control aspects of DGs –Market facts, issues and challenges - Limitations of DGs.

<u>UNIT - IV</u>

Introduction to Micro grid: Micro grid Configurations – CERTS Micro grid Test Bed – DC Micro grid- HFAC Micro grid –LFAC – Micro grid – Hybrid DC- and AC- Coupled Micro grid.

Power Electronics in Micro grid: Power Electronics based Microgrid - Grid Connected Mode – Islanded mode – Battery Charging mode – design of parallel inverters – Microgrid application - Brick Busses Software Framework.

<u>UNIT - V</u>

Control in Micro grid: Impact of load characteristics – Local control – Centralized Control-Decentralized Control Microgrid control for island operation – PQ Control - Droop control methods – Frequency/Voltage Control – Control of Inverter Output Impedance.

Text Books

- 1. N. Jenkins, J.B. Ekanayake and G. Strbac, 'Distributed Generation', IET Press, 2010.
- 2. Nikos Hatziargyiou, "Micro grids: Architectures and Control", Wiley-IEEE Press, December 2013.

- 1. Suleiman M. Sharkh, Mohammad A. Abu-Sara, Georgios I. Orfanoudakis, Babar Hussai, "Power Electronic Converters for Microgrid", Wiley-IEEE Press, 2014.
- 2. S. Chowdhury, S. P. Chowdury and Peter Crossley," Microgrids and Active Distribution Networks" ISBN 978-1-84919-014-5, IET renewable Energy series, 2009.

Course Title	Alternative		and Em to motiv		Control in		ech ME NOURS)	
Course Code	e Category	H	ours/W	eek	Credits	Maxim	um Marks	5
20HN301	PEC-I	L	Т	Р	C	Continuous Internal Assessment	End Exam	Total
		3	0		3	40	60	100
Mid	Exam Duration:	90 Mi	nutes		E	nd Exam Durat	tion: 3Hrs	
ExplainExplainDeterm	completing this construction of various alcohol and of various vegetable time the formation of various emission	and gas e oils a of vari	eous fue nd their ous emis	ls and th use in C ssions fi	CI engines. rom SI engin	e and control tec		
Course Outco	mes: On successf	ful com	pletion of	of this co	ourse, the stu	idents will be ab	le to	
CO 1 Ident	ify various emissi	ions fro	m SI and	d CI eng	gines.			
CO 2 Appl	y the properties of	f alcoho	ol fuels a	ind gase	ous fuels.			
CO 3 Predi	ct the problems b	y using	vegetab	le oils i	n diesel engi	ines.		

- **CO 4** Choose the use of various emission measuring instruments.
- **CO 5** Identify various emissions from SI and CI engines.

Alcohol fuels and gaseous fuels: Alcohol fuels and gaseous fuels: Properties of alcohols, alcohol – gasoline blends, fuel flexible vehicle, methanol reformed gas engine, dual fuel system, Spark assisted diesel engine, surface ignition engine, ignition accelerators, performance, combustion and emission characteristics in SI and CI engines, Properties of hydrogen, production and storage methods, safety precautions, biogas production and emission characteristics of hydrogen, biogas, LPG and CNG in SI and CI engines

<u>UNIT - II</u>

Vegetable oils: Vegetable oils: Various vegetable oils for diesel engines, structure and properties, problems in using vegetable oils in diesel engines, Methods to improve the engine performance using vegetable oils – preheating, Esterification , blending with good secondary fuels, Semi-adiabatic engine, surface ignition engine, ignition accelerators dual

fuelling with gaseous and liquid fuels coils, Performance, combustion and emission characteristics of biodiesel fuelled diesel engines

<u>UNIT - III</u>

Emissions from SI engines and their control Emissions from SI engines and their control: Emission formation in SI engines (CO, HC and NOx), Effect of design and operating variables on emission formation, Control techniques – Thermal reactor, exhaust gas recirculation, Three way catalytic convertor and Charcoal canister control for evaporative emission, Positive crank case ventilation for blow by gas control.

<u>UNIT - IV</u>

Emissions from CI engines and their control:

Emissions from CI engines and their control: Emission formation in CI engines (HC, CO, NOx, Aldehydes, smoke and particulates), Effect of design and operating variables on emission formation, Control techniques – Exhaust gas recirculation, NOx selective catalytic reduction, Diesel oxidation catalytic convertor, Diesel particulate filter, NOx versus particulates – Trade off.

<u>UNIT - V</u>

Emission measuring instruments and test procedures Emission measuring instruments and test procedures: Principle of operation of emission measuring instruments used in SI and CI engines, Measurement of CO2 and CO by NDIR, Hydrocarbon emission by FID, Chemiluminescentanalyser for NOx, Liquid and Gas chromatograph Spot sampling and continuous indication type smoke meters (Bosch, AVL and Hartridge smoke meters) emission test procedures – FTP, Euro and Bharat norms.

Text Books:

- 1. Ganesan V, Internal combustion engines, 4th Edition, Tata McGraw Hill Education, 2012
- 2. Thipse.S.S, Alternative Fuels: Concepts, Technologies and Developments, Jaico Publishing House, 2010.

- 1. Michael F. Hordeski, Alternative Fuels: The Future of Hydrogen, The Fairmont Press, 2008
- 2. R.K.Rajput, A textbook of Internal Combustion Engines, 2nd Edition, Laxmi Publications, 2007
- "Society of Automotive Engineers", Alternative Fuels: Fuel Cells and Natural Gas, Society of Automotive Engineers, Incorporated, 2000

Course Title	Au	Automation And RoboticsB.Tech ME (HONOURS)						
Course Code	Category	He	ours/Wo	eek	Credits	Maximum Marks		
20HN302	PEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0		3	40	60	100
Mid Ex	am Duration: 9	0 Minu	ites	1	E	nd Exam Dura	tion: 3Hrs	1

Course Objectives:

The objectives of this course are to

- Describe the basic concepts of automation in manufacturing systems
- Acquire the fundamental concepts of automated flow lines and their analysis.
- Classify automated material handling, automated storage and retrieval systems.
- Illustrate adaptive control systems and automated inspection methods.
- Define the fundamental concepts of industrial robotics.
- Apply basic mathematics to calculate the robot kinematic and dynamic mechanics
- Understand the robot programming methods and software packages.

Course	e Outcomes: On successful completion of this course, the students will be able to
CO 1	Examine the types of hardware components of automation and control
CO 2	Design a simple material handling system for low cost manufacturing.
CO 3	Design a simple gripper for robot.
CO 4	Compare the types of actuators used in robot manipulator
CO 5	Summarize the requirements and features of robot programming

<u>UNIT – I</u>

Introduction: Automation in production system, need, types, Principles and Strategies of automation, levels of automation, basic elements of an automated system, hardware components for automation and process control, mechanical feeders, hoppers, orienters, high speed automatic insertion devices. Automated flow lines & transfer mechanisms, fundamentals of transfer Lines, flow lines with or without buffer storage.

<u>UNIT - II</u>

Assembly Line Balancing and Automated Manufacturing System Assembly Line Balancing: Assembly process and systems assembly line, line balancing algorithms, ways of improving line balance, flexible assembly lines. Material handling and Identification Technologies: Overview of automatic material handling systems, principles and design consideration, material transport systems, storage systems, overview of automatic identification methods. Automated Manufacturing Systems: Components, classification and overview of manufacturing systems, manufacturing cells, GT and cellular manufacturing, FMS and its planning and implementation.

<u>UNIT - III</u>

Introduction to Robotics Introduction: Brief history of robots, classification of robot, functional line diagram, degrees of freedom. Elements of robot - types and its functions, factors to be considered in the design of grippers. Robot Actuators And Feedback Components: Actuators, Pneumatic, Hydraulic actuators, Electric & Stepper motors, comparison. Position sensors - potentiometers, resolvers, encoders - velocity sensors, Tactile sensors, Proximity sensors.

<u>UNIT - IV</u>

Kinematics and Dynamics of a Manipulator Manipulator Kinematics Homogenous transformations as applicable to translation, rotations- D-H notation, Forward and inverse kinematics. Manipulator Dynamics: Differential transformations, Jacobians, Lagrange - Euler and Newton - Euler formations.

UNIT – V

Robot Programming and Applications Robot Programming: Methods of programming requirements and features of programming languages, software packages, problems with programming languages. Motion path control- slew motion, joint integrated motion, straight line motion; avoidance of obstacles. Robot Application in Manufacturing: Material Transfer -Material handling, loading and unloading; Process - spot and continuous arc welding & spray painting; Assembly and Inspection

Textbooks:

- 1. MikellP.Groover, Automation, Production Systems and Computer Integrated Manufacturing- Pearson Education.5/e, 2009.
- 2. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics McGraw Hill, 1986.

- S. R. Deb &Sankha Deb, Robotics Technology and Flexible Automation, Tata McGraw-Hill Education. 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.
- Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 3. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

Course Title		То	ol Desig	n		B.Tech ME (HONOURS)			
Course Code	Category	Но	ours/We	Maximum Marks					
20HN303	PEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0		3	40	60	100	
Mid Ex	am Duration: 9	90 Minu	F	End Exam Dura	tion: 3Hrs				

Course Objectives:

The objectives of this course are to

- Design Tools that can withstand all forces acting on them.
- Design tools which reduce downtime and hence increase production.
- Select the tool material that increases the tool life.
- Provide simple and smooth, easy operation machine tools to maximize the efficiency.
- To produce the components of high quality that required fewer secondary operations on them.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Determine the cutting tool geometry, mechanism of chip formation and mechanics of
	orthogonal cutting.
CO 2	Identify basic parts and operations of machine tools including lathe, shaper, planer, drilling, boring,
	milling and grinding machine.
CO 3	Design locating and clamping devices to produce a component.
CO 4	Select a machining operation and corresponding machine tool for a specific application in real time
CO 5	Select a measuring instrument to inspect the dimensional and geometric features of a given
	component

<u>UNIT – I</u>

Introduction to Tool Design

Introduction –Tool Engineering – Tool Classifications– Tool Design Objectives – Tool Design in manufacturing- Challenges and requirements- Standards in tool design-Tool drawings -Surface finish – Fits and Tolerances - Tooling Materials- Ferrous and Non ferrous Tooling Materials- Carbides, Ceramics and Diamond -Non metallic tool materials-Designing with relation to heat treatment.

<u>UNIT - II</u>

Design of Cutting Tools

Mechanics of Metal cutting –Oblique and orthogonal cutting- Chip formation and shear angle - Single-point cutting tools – Milling cutters – Hole making cutting tools- Broaching Tools - Design of Form relieved and profile relieved cutters-Design of gear and thread milling cutters.

Design of Jigs and Fixtures

Introduction – Fixed Gages – Gage Tolerances –selection of material for Gauges – Indicating Gages – Automatic gages – Principles of location – Locating methods and devices – Principles of clamping – Drill jigs – General considerations in the design of drill jigs – Drill bushings – Methods of construction –Types of Fixtures – Vice Fixtures – Milling Fixtures – Boring Fixtures – Broaching Fixtures.

UNIT - IV

Design of Press Tool Dies

Types of Dies –Method of Die operation–Clearance and cutting force calculations- Blanking and Piercing die design – Pilots – Strippers and pressure pads- Presswork materials – Centre of pressure -Strip layout – Short-run tooling for Piercing – Bending dies – Drawing dies-Design and drafting.

<u>UNIT - V</u>

Tool Design for CNC Machine Tools

Introduction –Tooling requirements for Numerical control systems – Fixture design for CNC machine tools- Sub plate and tombstone fixtures-Universal fixtures– Cutting tools– Tool holding methods– Automatic tool changers and tool positioners – Tool presetting– General explanation of the Brown and Sharp machine.

Text Books:

- 1. Cyrll Donaldson, George H.LeCain, V.C. Goold, "Tool Design", Tata McGraw Hill Publishing Company Ltd., 2000.
- 2. E.G.Hoffman," Jig and Fixture Design", Thomson Asia Pvt Ltd, Singapore, 2004.

- 1. PrakashHiralal Joshi, "Tooling data", Wheeler Publishing, 2000.
- 2. Venkataraman K., "Design of Jigs, Fixtures and Presstools", TMH, 2005.
- 3. Haslehurst M., "Manufacturing Technology", The ELBS, 1978.
- 4. Online Learning Resources

Course Title	Po	Power Plant Engineering B.Tech ME (HONOURS)										
Course Code	Category	He	ours/We	ek	Credits	Maximum Marks						
20HN304	HN	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
		3	0		3	40	60	100				
Mid E	Mid Exam Duration: 90 Minutes End Exam Duration: 3Hrs											
Course Objective	es:											
. The objectives of	of this course are	e to										
Familiariz	e the sources of	energy,	power p	lant ecc	nomics and	environmental asj	pects.					
Outline th	e working comp	onents c	of differe	ent powe	er plant.							
Explain re	enewable energy	y source	s; chara	cteristic	s, working p	rinciple, classify	types, lay	outs, and				
plant oper	ations.											
Impart typ	es of nuclear po	wer plan	nts, and	outline	working prin	ciple and advanta	ges and ha	zards.				
Course Outcome	s: On successfu	l comple	etion of t	his cou	rse, the stude	ents will be able to)					
CO1 Outline	sources of ener	gy, pow	er plant	econom	ics, and envi	ronmental aspects	s.					
CO 2 Descrit	be working of a	steam po	wer pla	nt and tl	heir compone	ents						
CO 3 Illustra	te the working n	nechanis	m of Di	esel and	Gas turbine	power plants.						
CO 4 Unders	tand the various	element	ts of hyd	roelectr	ric power pla	nt and their types						
CO 5 Summa	rize types of rei	newable	energy s	sources	and their wor	rking principle.						

Introduction to the Sources Of Energy - Resources and Development of Power in India. Layouts of Steam, Hydel, Diesel, MHD, Nuclear and Gas Turbine Power Plants - Combined Power Cycles - Comparison and Selection.

Power Plant Economics and Environmental Considerations: Capital Cost, Investment of Fixed Charges, Operating Costs, General Arrangement of Power Distribution, Load Curves, Load Duration Curve. Definitions of Connected Load, Maximum Demand, Demand Factor, Average Load, Load Factor, Diversity Factor - Tariff - Related Exercises.

<u>UNIT –II</u>

Steam Power Plant : Modern High Pressure and Supercritical Boilers - Analysis of Power Plant Cycles - Modern Trends in Cycle Improvement - Waste Heat Recovery, Fluidized Bed Boilers., Fuel and Handling Equipments, Types of Coals, Coal Handling, Choice of Handling Equipment, Coal Storage, Ash Handling Systems.

Steam Power Plant: Construction- Dust Collectors, Cooling Towers And Heat Rejection. Analysis of Pollution from Thermal Power Plants - Pollution Controls.

<u>UNIT –III</u>

Diesel Power Plant:Diesel Power Plant: Introduction - IC Engines, Types, Construction-Plant Layout with Auxiliaries - Fuel Storage

GAS Turbine Plant: Introduction - Classification - Construction - Layout with Auxiliaries - Principles of Working Closed and Open Cycle Gas Turbines. Advantages And

Disadvantages Combined Cycle Power Plants.

<u>UNIT-IV</u>

Hydro Electric Power Plant: Water Power - Hydrological Cycle / Flow Measurement - Drainage Area Characteristics - Hydrographs - Storage and Pondage - Classification of Dams and Spill Ways.

Hydro Projects & Plant: Classification - Typical Layouts - Plant Auxiliaries - Plant Operation Pumped Storage Plants.

<u>UNIT- V</u>

Power From Non-Conventional Sources: Utilization of Solar Collectors- Principle of its Working, Wind Energy - Types of Turbines - HAWT & VAWT-Tidal Energy. MHD power Generation.

Nuclear Power Station: Nuclear Fuel - Nuclear Fission, Chain Reaction, Breeding and Fertile Materials - Nuclear Reactor -Reactor Operation.

Types of Reactors: Pressurized Water Reactor, Boiling Water Reactor, Sodium-Graphite Reactor, Fast breeder Reactor, Homogeneous Reactor, Gas Cooled Reactor, Radiation Hazards and Shielding - Radioactive Waste Disposal.

Text books:

- 1. P.K. Nag, Power Plant Engineering, 3/e, TMH, 2013.
- 2. Arora and S. Domkundwar, A course in Power Plant Engineering, DhanpatRai& Co (P) Ltd, 2014

- 1. Rajput, A Text Book of Power Plant Engineering, 6/e, Laxmi Publications, 2020.
- 2. Ramalingam, Power plant Engineering, Scietech Publishers, 2019
- 3. P.C. Sharma, Power Plant Engineering, S.K. Kataria Publications, 2019.

Course Title	NON	-DEST	RUCTI	VE TES	STING	B. Tech. ME	(HONOU	IRS)	
Course Code	c Category	Hou	rs/Week	<u> </u>	Credits	Maximum M	arks		
20HN305	PEC-I	L T P C Continuous End Internal Exam Assessment s							
		3	0		3	40	60	100	
Mid Exam D	uration: 90 MIN			•		End Exam D	uration:	3Hrs	
Course Obje	ctives:				·				
. The objectiv	ves of this course a	are to							
Ū.	uce basic concepts		destruct	ive testi	ng.				
	iarize with charact				0	rejection and ef	fectivene	ss.	
	ibe concept of liqu								
	mitations.					F	~,~ -FF-		
	in the principles	of infr	ared and	therm	al testing an	plications and l	honev co	mh and	
-	vich structures case			unorma	a testing, up	prications and r		ine una	
	t NDE and its appl			ure ves	sels casting a	nd welded const	ructions		
	omes: On success		_						
		-				ients will be able	, 10		
CO 1 P	redict various me	thods of	non-des	tructive	testing.				
CO 2 A	pply relevant non	-destruc	tive testi	ing meth	nod different	applications.			
CO 3 E	xplain the applica	ations of	Railway	s, Nucl	ear and chem	ical industries.			
CO 4 C	Dutline the limitati	ons and	disadva	ntages o	f NDE				

Introduction to non-destructive testing: Introduction to non-destructive testing: Radiographic test, Sources of X and Gamma Rays and their interaction with Matter, Radiographic equipment, Radiographic Techniques, Safety Aspects of Industrial Radiography.

<u>UNIT – II</u>

Ultrasonic test Ultrasonic test: Principle of Wave Propagation, Reflection, Refraction, Diffraction, Mode Conversion and Attenuation, Sound Field, Piezo-electric Effect, Ultrasonic Transducers and their Characteristics, Ultrasonic Equipment and Variables Affecting Ultrasonic Test, Ultrasonic Testing, Interpretations and Guidelines for Acceptance, Rejection - Effectiveness and Limitations of Ultrasonic Testing.

<u>UNIT - III</u>

Liquid penetrant, Eddy Current & Magnetic Particle Test: Liquid Penetrant Test: Liquid Penetrant Test, Basic Concepts, Liquid Penetrant System, Test Procedure, Effectiveness and Limitations of Liquid Penetrant Testing.

Eddy Current Test: Principle of Eddy Current, Eddy Current Test System, Applications of Eddy Current-Testing Effectiveness of Eddy Current Testing.

Magnetic Particle Test: Magnetic Materials, Magnetization of Materials, Demagnetization of Materials, Principle of Magnetic Particle Test, Magnetic Particle Test Equipment, Magnetic Particle Test Procedure, Standardization and Calibration, Interpretation and Evaluation, Effective Applications and Limitations of the Magnetic Particle Test.

<u>UNIT – IV</u>

Infrared & Thermal Testing Infrared And Thermal Testing

Introduction and fundamentals to infrared and thermal testing-Heat transfer -Active and passive techniques -Lock in and pulse thermography-Contact and non contact thermal inspection methods-Heat sensitive paints -Heat sensitive papers --thermally quenched phosphors liquid crystals -techniques for applying liquid crystals -other temperature sensitive coatings -Inspection methods -Infrared radiation and infrared detectors-thermo mechanical behavior of materials-IR imaging in aerospace applications, electronic components, Honey comb and sandwich structures-Case studies.

<u>UNIT - V</u>

Industrial Applications of NDE

Industrial Applications of NDE: Span of NDE Activities Railways, Nuclear, Non-nuclear and Chemical Industries, Aircraft and Aerospace Industries, Automotive Industries, Offshore Gas and Petroleum Projects, Coal Mining Industry, NDE of pressure vessels, castings, welded constructions.

Text Books:

- 1. J Prasad, GCK Nair , Non destructive test and evaluation of Materials, Tata mcgraw-Hill Education Publishers, 2008.
- 2. Josef Krautkrämer, Herbert Krautkrämer, Ultrasonic testing of materials, 3/e, Springer-Verlag, 1983.
- 3. X. P. V. Maldague, Non destructive evaluation of materials by infrared thermography, 1/e, Springer-Verlag, 1993.

Reference Books:

1. Gary L. Workman, Patrick O. Moore, DoronKishoni, Non-destructive, Hand Book, Ultrasonic Testing, 3/e, Amer Society for Nondestructive, 2007.

Cou	rse Title	Ergonomic	s and H Engine		Factors i	in	B.Tech M	E (HONOU	J RS)		
Cou	rse Code	Category	Ho	ours/We	ek	Credits	Maximum Marks				
20	HN306	PEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
			3	0		3	40	60	100		
	Mid Exa	am Duration: 9	90 Minu	tes		F	End Exam Dura	tion: 3Hrs			
Course	Objectives:										
●	Manmachine	e-environment i	nteractio	n systen	n and us	er-friendly d	lesign practice;				
•	Human co	mpatibility, c	comfort	and	adaptabi	ility; Fund	amentals of	ergonomics	:Physical		
	(anthropome	trics, human bo	dy- struc	cture and	functio	on, posture, r	novement and b	iomechanics	s),		
	Physiologica workload);	l (work physio	logy) and	d Psych	ological	aspects (be	havior, cognitiv	e aspects ar	d mental		
		processing, hu al factors influe			_	-	al performance	and visual	displays;		
			-	-			eria/check whil	e designing	: Design		
	-	•					luation and Part	00	0		
	aspects.			und or	501101111	uesign evu		erpaiory erg	5011011105		
	1	On successful of	completio	on of thi	s course	e, the student	s will be able to				
CO 1	Determine	Mutual task co	mfort								
CO 2	Identify bas	ic Posture and	job relat	ion Post	ture and	body suppor	rtive devices				
	i	le l'Osture and				• • •					
CO 2	Design Mo	dule Visual Iss	ues Visu	al perfo	rmance		iys				
	-			_		Visual displa					

<u>UNIT –I</u>

Introducing Ergonomics, Welcome and content details, Design today- Human aid to lifestyle, Discipline approach: Ergonomics/ Human factors, Journey, Fitting task to man their contractual structure Domain, Philosophy and Objective Mutual task comfort: two way dialogue, communication model Ergonomics/ human Factors fundamentals Physiology (work physiology) and stress

<u>UNIT –II</u>

Human physical dimension concern Human body- structure and function, anthropometrics Anthropometry: body growth and somatotypes Static and dynamic anthropometry,Stand Posture- erect Anthropometry landmark:Sitting postures Anthropometry: squatting and crosslegged postures Anthropometric measuring techniques Statistical treatment of data and percentile calculations Module Posture and movement Human body- structure and function Posture and job relation Posture and body supportive devices Chair characteristics Vertical work surface Horizontal work surface Movement Work Counter

<u>UNIT –III</u>

Behavior and perception Communication and cognitive issues Psycho-social behavior aspects, behavior and stereotype Information processing and perception Cognitive aspects and mental workload Human error and risk perception Module Visual Issues Visual performance Visual displays

UNIT -IV

Environments Factors, Environmental factors influencing human performance Ergonomic design process Ergonomics design methodology Ergonomics criteria/check while designing Design process involving ergonomics check Some checklists for task easiness

UNIT –V

Performance support and design intervention Occupational safety and stress at workplace in view to reduce the potential fatigue, errors, discomforts and unsafe acts Workstation design Furniture support Vertical arm reach and design application possibility Humanizing design: Design and human compatibility, comfort and adaptability aspects Design Ergonomics in India: scope for exploration Concluding session: Design Ergonomics in India: scope for exploration

Text Books:

- 1. Bridger, RS: Introduction to Ergonomics, 2nd Edition, Taylor & Francis, 2003.
- 2. Dul, J. and Weerdmeester, B.Ergonomics for beginners, a quick reference guide, Taylor & Francis, 1993.

- 1. Green, W.S. and Jordan, P.W. Human Factors in Product Design, Taylor & rancis, 1999.
- 2. D. Chakrabarti, Indian Anthropometric Dimensions for ergonomic design practice, National Institute of Design,Ahmedabad, 1997
- G.Salvendy (edit), Handbook of Human Factors and ergonomics, John Wiley & Sons, Inc., 1998
- 4. Singh,S (Edt),Ergonomics Interventions for Health and Productivity, Himanshu Publications, Udaipur, New Delhi, 2007

Course Title	Dyn	amics of N	Aachin	ery		B.Tech MF	E (HONOU	U RS)
Course Code	Category	Hou	rs/Wee	k	Credits	Maxim	um Mark	S
20HN307	PEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0		3	40	60	100
Mid	Exam Duration: 9	0 Minutes	5		Ε	nd Exam Dura	tion: 3Hrs	5
Course Objective	es:							
. The objectives of	f this course are to							
To introd	uce the laws of prec	ession.						
• To learn a	about the working o	f different	types of	of brake	es and dyna	mometers,		
• To able to	design the fly whe	el for an IO	C engin	e,				
• To introd	uce different types	of Governo	ors,					
• To analyze	the unbalanced for	ces acting	in rotat	ing and	l reciprocat	ing system and	to know th	ne
balancing	methods of differen	t mechanic	al syste	ems				
Course Outcome	s: On successful con	mpletion o	f this c	ourse, t	he students	will be able to		
CO1 Solve	the numerical prob	lems on bra	akes an	d unde	rstand the v	vorking of Dyna	amometers	1
CO 2 Apply	gyroscopic princip	les on aerc	planes	s, ships	, four whee	l and two wheel	vehicles.	
CO 3 Analy	ze the basics of Go	vernors and	d forces	s acting	on various	governors.		
CO 4 Evalu	ate the numerical pr	oblems on	Balan	cing of	Rotating m	asses and recipi	rocating m	asses.
CO 5 Desig	n the response of sin	ngle degree	e freedo	om syst	ems with f	ree and forced v	ibration, a	nd can
Evalu	ate the critical speed	d of the sha	aft.	-				

Balancing: Balancing of rotating masses- single and multiple masses- single and different planes Balancing of Reciprocating masses- Primary and secondary balancing of reciprocating masses-graphical methods. Unbalanced forces and couples-V-engine, multi cylinder in line and radial engine for primary and secondary balancing.

UNIT-II

Turning Moment Diagrams and Flywheels: Turning moment diagrams for IC engine and multi cylinder engine. Crank effort- coefficient of fluctuation of energy, coefficient of fluctuation of speed-Fly wheels and their design, fly wheels for punching machines.

<u>UNIT -III</u>

Governors: Watt, Porter and Proell governors. Spring loaded governors- Hartnell and Hartung governors with auxiliary springs. Sensitiveness, isochronism and hunting.Effort and power of agovernor.

UNIT -IV

Brakes and Dynamometers: Simple block brakes, Band brake, internal expanding brake, braking of vehicle. Dynamometers- absorption and transmission types. General description and methods of operation.

Precession: Gyroscopes, effects of precession motion on the stability of moving vehicles such as motor car, motorcycle, aero planes

UNIT-V

Vibration: Free and forced vibration of single degree of freedom system, Role of damping, Whirling of shafts and critical speeds. Simple problems on free, forced and damped vibrations. Vibrationisolation & Transmissibility. Transverse vibrations of beams with concentrated and distributed loads. Dunkerly'smethod. Torsional vibrations-two and three rotor systems.

Text Books:

- 1. Thoery of Machines, S.S Ratan, MGH
- 2. Theory of machines, Khurmi, S.Chand.
- 3. Kinematics and Dynamics of machinery-R.L.NORTON, TATA MC GRAW HILL
- 4. Theory of machines- J.E.SHIEGLEY, MC GRAW HILL

- 1. Theory of machines, THOMOS BEVAN, PEARSON PUBL, 3RD EDITION
- 2. Mechanism and mechanics :Mchal.M.StanisicCengageindia publishers 1st edition
- Theory of Machines and Mechanism ,JOHN VICKY J.VR,GORDON R.PENNOK JOSEPH 5TH EDITION OXFORD PUBLICATION
- 4. Design of machine elments , M.F.SPOTS , TE, SOUP 8TH EDITION PEARSON

Course 7	Title	Solar	And Wi	nd Ener	rgy Syst	tems	B.Tech ME (HONOURS)			
Course C	Code (Category	He	ours/We	ek	Credits	Maximum Marks			
20HN308	08	PEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			3	0		3	40	60	100	
I	Mid Exam	Duration:	90 Min	utes			End Exam Dura	ation: 3H	rs	
Course Ob	jectives:									
. The object	tives of thi	is course ar	e to							
• Fan	niliarize wi	th basics of	solar rad	liation,	availabl	e solar energ	y and its measure	ment.		
• Fan	niliarize wi	th solar col	lectors, c	onstruct	tion and	operation of	solar collectors.			
• Und	lerstand sol	lar energy c	onversio	on syster	ns, appl	ications and p	ower generation.			
• Fan	hiliarize the	e wind ener	gy sourc	es assess	sment					
• Exp	lain basics	of designir	ig aerofo	il						
Course Ou	tcomes: O	n successfu	l comple	tion of	this cou	rse, the stude	nts will be able to	1		
CO 1						on and solar c				
CO 2						ferent applica				
CO 3		-		•			know how it can b	e tapped.		
CO 4							ersion systems.			
CO 5		ferent winc								

Solar radiation and collectors: Solar radiation and collectors: Solar angles – Sun path diagrams – Radiation - extra terrestrial characteristics - measurement and estimation on horizontal and tilted surfaces - flat plate collector thermal analysis - testing methods-evacuated tubular collectors - concentrator collectors – classification - design and performance parameters - tracking systems - compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats – performance of the collectors.

Solar thermal technologies: Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker : domestic, community - Solar pond - Solar drying.

<u>UNIT - II</u>

Solar PV fundamentals: Solar PV fundamentals: Semiconductor – properties - energy levels - basic equations of semiconductor devices physics. Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - figure of merits of solar cell - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells – Solar thermo-photovoltaics. SPV system design and applications: Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design - of solar eating - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking - centralized and decentralized SPV systems - standalone -

hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems.

<u>UNIT - III</u>

Introduction to wind energy: Introduction: Historical Perspectives on Wind Turbines-Indian Energy Scenario - Global Energy Scenario - Introduction to Indian Wind Industry -Wind Energy potential of India and Global Wind Installations.

Basics of Wind Resource Assessment: Power in the wind –Wind Characteristics -Measurement of wind using anemometers (cup anemometer, propeller anemometer, pressure plate anemometer, pressure tube anemometer, sonic anemometer and other remote wind speed sensing techniques) –Turbulence-Wind Power Density –Average wind speed calculation - Statistical models for wind data analysis (Weibull and Rayleigh distribution). Energy estimation of wind regimes – Wind Rose, Wind Monitoring Station Siting and Instrumentation.

<u>UNIT - IV</u>

Wind Energy Conversion Systems: Wind Energy Conversion Systems: Types - Components of Modern Wind Turbine (HAWT and VAWT) - Fixed and Variable Speed operations - Power Control (Passive stall, Active pitch, Passive pitch and Active stall) - Electrical aspects of wind turbine, Safety of wind turbines.

<u>UNIT - V</u>

Wind Farm Design and Health (Condition) Monitoring: Wind Farm Design and Health (Condition) Monitoring: Planning of wind farm, Site selection, Micro siting, Grid Integration, Power evacuation, Wind Farm Feasibility Studies, Preparation of DPR, Environmental Benefits and Impacts.

Small Wind Turbines: Water pumping wind mills, offshore wind energy, Wind turbine testing, future developments.

Text Books:

- 1. Goswami D.Y., Kreider, J. F. and Francis., "Principles of Solar Engineering', Taylor and Francis, 2000.
- 2. Chetan Singh Solanki, "Solar Photovoltaics Fundamentals, Technologies and Applications", PHI Learning Private limited, 2011.
- 3. Satyajit Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Springer Publications, (2006).

- 1. Sukhatme S.P..Nayak.J.P, 'Solar Energy Principle of Thermal Storage and collection", Tata McGraw Hill, 2008.
- 2. Satyajit Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Springer Publications, (2006).
- 3. Sathyajith Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Springer Publications, (2006).

- 4. Wei Tong, Wind Power Generation and Wind Turbine Design, WIT Press, (2010.
- 5. Wind Power, Revised Edition: Renewable Energy for Home, Farm, and Business, Paul Gipe, 2004, Chelsea Green Publishing.
- 6. R. Jha, Wind Turbine Technology, CRC Press, (2010).

Course	Title	COMPUTA	TIONA	L FLUI	D DYN	AMICS	B. Tech. ME	(HONOU	U RS)			
Course)	Category	Hours	/Week		Credit	Maximum M	Maximum Marks				
Code		curegory			T	S						
20HN3	609	PEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	0		3	40	60	100			
Mid Ex	Mid Exam Duration: 90 MIN							End Exam Duration: 3Hrs				
Course	e Objec	tives:										
. The c	objectiv	es of this cours	e are to									
•	Teach	the basics of the	e major †	theories,	approa	ches and r	nethodologies u	used in CI	FD.			
•	Familia	ar with the diff	erential	equation	ns for fl	ow pheno	mena and num	erical me	thods for			
	their so	olutions.										
•	Introdu	ce explicit and	implicit	scheme	s in hyp	erbolic eq	uations.					
•	Expose	the students to	solve th	ne proble	ems thro	ough finite	volume metho	od.				
•	Unders	tand the conce	pts of lin	ear fluid	d flow p	roblems, s	steady state pro	blems and	d transient			
	probler	ns.										
Course	e Outco	mes: On succe	ssful con	npletior	n of this	course, th	e students will	be able to)			
CO 1	Exam	ine the major th	heories,	approac	hes and	methodol	ogies used in C	FD.				
CO 2	Form	ulate finite vol	ume met	hod for	two and	three dim	nensional fluid	flow prob	lems.			
CO 3	Apply	numerical mo	dels to fl	uid flow	and he	at transfer	calculations.					
CO 4		nstrate the abi	lity to co	ommunio	cate the	results of	this detailed flu	uid-flow s	tudy in a			
CO5	Outlin	ne the ability to	o describ	e variou	s flow f	eatures in	terms of appro	priate flui	d			
CO5	mecha	nical principles	s and for	ce balar	ices.							

Introduction: Finite difference method, finite volume method, finite element method, governing equations and boundary conditions, Derivation of finite difference equations.

Solution methods: Solution methods of elliptical equations — finite difference formulations, interactive solution methods, direct method with Gaussian elimination. Parabolic equations-explicit schemes and Von Neumann stability analysis, implicit schemes, alternating direction implicit schemes, approximate factorization, fractional step methods, direct method with tridiagonal matrix algorithm.

<u>UNIT - II</u>

Hyperbolic equations: explicit schemes and Von Neumann stability analysis, implicit schemes, multi step methods, nonlinear problems, second order one-dimensional wave equations. Burgers equations: Explicit and implicit schemes, Runge-Kutta method.

Formulations of Incompressible Viscous Flows: Formulations of incompressible viscous flows by finite difference methods, pressure correction methods, vortex methods.

Treatment of compressible flows: potential equation, Euler equations, Navier-stokes system of equations, flow field-dependent variation methods, boundary conditions, example problems.

UNIT - IV

Finite Volume Method: Finite volume method via finite difference method, formulations for two and three-dimensional problems.

<u>UNIT – V</u>

Standard Variational Methods: Linear fluid flow problems, steady state problems, Transient problems.

Text Books:

- 1. Computational fluid dynamics/ T. J. C'hung/ Cambridge University press,2002.
- 2. Computational Fluid Dynamics: Basics with applications/John D. Anderson/ McGraw Hill.

- 1. Text book of fluid dynamics/ Frank Choriton/ CBS Publishers & distributors, 1985.
- 2. Numerical heat transfer and fluid flow / Suhas V. Patankar/ Hemashava Publishers corporation&McGraw Hill.
- 3. Computational Fluid Flow and Heat Transfer/ Muralidaran/ Narosa Publications.
- 4. Fundamentals of Computational Fluid Dynamics/Tapan K. Sengupta / Universities Press.
- 5. Introduction to Theoretical and Computational Fluid Dynamics/C. Pozrikidis / Oxford.

Course Title	Six Sig	ma and	Lean M	B.Tech ME	(HONOU	(RS)				
Course Code	Category	H	ours/We	eek	Credits	Maximum Marks				
20HN310		L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	0		3	40	60	100		
Mid E	xam Duration	n: 90 M	inutes		E	nd Exam Durati	on: 3Hrs			
Course Object	ives:									
. The objective	s of this course	e are to								
• Introduc	the students,	, the bas	ic conce	pts of si	ix sigma and	lean manufacturir	ıg.			
• Expose	with various q	uality is	sues in l	Inspectio	on.					
• Gain Kr	owledge on qu	uality co	ontrol an	d its app	olications to i	real time.				
• Know th	ne extent of cel	llular m	anufactu	ring and	1 5S.					
Course Outcor	nes: On succe	ssful co	mpletion	of this	course, the s	tudents will be abl	le to			
			•			sigma and lean ma		ıg.		
	the concepts of	-				8		0		
	te the principle				-					
CO 4 Select p	procedure and	principl	es of val	lue strea	m mapping.					
CO 5 Determ	Select procedure and principles of value stream mapping. Determine the reliability function using six-sigma.									

Introduction to Six-Sigma: Introduction to Six-Sigma-Probabilistic models-Six Sigma measures-Yield-DPMO-Quality level-Reliability function using Six-Sigma-MTTF using Six Sigma-Maintenance free operating period- Availability using Six-Sigma-Point availability-Achieved availability-Operational Availability-Examples

<u>UNIT - II</u>

The Elements of Six Sigma and their Determination: The Elements of Six Sigma and their Determination-The Quality Measurement Techniques: SQC, Six Sigma, Cp and Cpk-The Statistical quality control (SQC) methods-The relationship of control charts and six sigma-The process capability index (Cp)-Six sigma approach-Six sigma and the 1.5 σ shift-The Cpk Approach Versus Six Sigma-Cpk and process average shift- Negative Cpk-Choosing six sigma or Cpk-Setting the process capability index-Examples.

<u>UNIT - III</u>

Introduction To Lean Manufacturing: Introduction To Lean Manufacturing: Conventional Manufacturing versus Lean Manufacturing – Principles of Lean Manufacturing – Basic elements of lean manufacturing – Introduction to LM Tools.

UNIT - IV

Cellular Manufacturing, JIT, TPM: Cellular Manufacturing, JIT, TPM :Cellular Manufacturing – Types of Layout, Principles of Cell layout, Implementation. JIT –

Principles of JIT and Implementation of Kanban. TPM – Pillars of TPM, Principles and implementation of TPM.

<u>UNIT - V</u>

Set Up Time Reduction, TQM, 5S, VSM 10,Set up time reduction – Definition, philosophies and reduction approaches. TQM – Principles and implementation. 5S Principles and implementation - Value stream mapping - Procedure and principles.

Textbooks:

- 1. U Dinesh Kumar, Crocker, Chitra and HaritheSaranga, Reliability and Six Sigma, Springer Publishers.
- 2. Sung H. Park, Six Sigma for Quality and Productivity Promotion, Asian Productivity Organization
- 3. Rother M. and Shook J, 1999 Learning to See: Value Stream Mapping to Add Value

and Eliminate Muda', Lean Enterprise Institute, Brookline, MA.

- 1. Sammy G. Shina, Six Sigma for Electronics Design and Manufacturing, McGraw-Hill.
- 2. Design and Analysis of Lean Production Systems, Ronald G. Askin& Jeffrey B. Goldberg, John Wiley & Sons, 2003.
- 3. Mikell P. Groover (2002) _Automation, Production Systems and CIM.

Course Tit	le	Energ	gy Auditin	B.Tech ME	(HONOL	J RS)			
Course Co	de Category	H	ours/Wee	k	Credits	Maximum Marks			
20HN311	PEC-II	L	Т	Р	С	Continuous Internal Assessment Exam		Total	
		3	0		3	40	60	100	
N	lid Exam Durati	on: 90 M	linutes			End Exam Du	iration: 3	Hrs	
 Intro Fam Tead Disc Course Ou 	tives of this cours oduce the concept iliarize with the F ch the principles a cuss the Thermal	s of energy Energy Ar and object and Elect essful cor	udit concept tives of the trical Enert npletion of	pts and e Energ gy man f this co	its approac gy manager agement burse, the st	nent. udents will be abl		ndia.	
	alyze the various	national a	and state le	vel ene	rgy policy.				
CO 3 Dev	velop the concepts	s of energ	gy conserva	ation in	boilers.				
CO 4 Sel	ect the thermal en	ergy con	ponents.						
CO 5 Illu	strate the concep	ots of sup	ply metho	ds to m	inimize sup	oply.			

General Aspects: Review of energy scenario in India, General Philosophy and need of Energy Audit and Management, Basic elements and measurements - Mass and energy balances – Scope of energy auditing industries - Evaluation of energy conserving opportUNITies, Energy performance contracts, Fuel and Energy substitution, Need for Energy Policy for Industries, National & State level energy Policies.

<u>UNIT - II</u>

Energy Audit Concepts: Need of Energy audit - Types of energy audit - Energy management (audit) approach - understanding energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system efficiencies - Optimizing the input energy requirements - Duties and responsibilities of energy auditors-Energy audit instruments - Procedures and Techniques.

<u>UNIT - III</u>

Principles and Objectives of Energy Management: Design of Energy Management Programmes - Development of energy management systems – Importance - Indian need of Energy Management - Duties of Energy Manager - Preparation and presentation of energy audit reports - Monitoring and targeting, some case study and potential energy savings.

<u>UNIT - IV</u>

Thermal Energy Management: Energy conservation in boilers - steam turbines and industrial heating systems - Application of FBC - Cogeneration and waste heat recovery - Thermal insulation - Heat exchangers and heat pumps –HVC industries-Building Energy Management.

<u>UNIT - V</u>

Electrical Energy Management: Supply side Methods to minimize supply-demand gap-Renovation and modernization of power plants - Reactive power management – HVDC-FACTS - Demand side - Conservation in motors - Pumps and fan systems – Energy efficient motors.

Text Books:

- 1. Murphy, W. R., Energy Management, Elsevier, 2007.
- 2. Smith, C. B., Energy Management Principles, Pergamum, 2007
- 3. Handbook of Energy Audit, Sonal Desai, Mcgraw Hill Education Private Ltd.,

- 1. Turner, W. C., Doty, S. and Truner, W. C., Energy Management Hand book, 7th edition, Fairmont Press, 2009.
- 2. De, B. K., Energy Management audit & Conservation, 2nd Edition, Vrinda Publication, 2010.
- 3. Energy Management Handbook W.C. Turner (John Wiley and Sons, A Wiley a. Interscience publication)
- 4. Industrial Energy Management and Utilisation –L.C. Witte, P.S. Schmidt, D.R. Brown (Hemisphere Publication, Washington, 1988)
- 5. Industrial Energy Conservation Manuals, MIT Press, Mass, 1982
- 6. Energy Conservation guide book Patrick/Patrick/Fardo (Prentice hall1993)

Course	Title	Scientific	Compu	Hono	urs Degre	e				
Course	Code	Category	Ho	ours/We	eek	Credits	s Maximum M		arks	
2092401	401	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			4	-		4	40	60	100	
Mid Exa	am Dur	ation: 90 Min					End Exam	Duration	n: 3Hrs	
Course	Course Objectives:									
 Το ι 	understa	nd various co	mmand	in MA	TLAB	and to S	olve algebraic	equation	ns using	
MAT	ΓLAB.									
• To	Write the	he programs fo	or curve	fitting,	roots of	equations	, Numerical I	Differentia	tion and	
integ	gration.									
Course	Outcon	nes: On success	ful com	pletion	of this c	ourse, the	students will b	e able to		
CO 1	Unders	stand various co	ommand	ls in MA	TLAB					
CO 2	Solve	algebraic equat	ions usi	ng MAT	'LAB					
CO 3	Write	the programs for	or curve	fitting a	nd roots	s of equation	ons.			
CO 4	Write	the programs for	or Nume	rical Di	fferentia	tion and ir	ntegration.			
CO 5	Solve	optimization ar	d Eigen	value p	roblems					

Introduction to MATLAB: Introduction to MATLAB, Data Types and Variables, Arrays, Cells, Strings, Operators, Flow Control, Loops, Functions, Input/Output, Array Manipulation, Plotting.

Systems of Linear Algebraic Equations: Introduction, Gauss Elimination Method, LU Decomposition Methods, Symmetric and Banded Coefficient Matrices, Pivoting, Matrix Inversion, Iterative Methods-Gauss–Seidel Method, Conjugate Gradient Method.

UNIT -II

Interpolation and Curve Fitting: Introduction, Polynomial Interpolation-Lagrange's Method, Newton's Method, Neville's Method, Limitations of Polynomial Interpolation, Interpolation with Cubic Spline, Least-Squares Fit.

Roots of Equations: Introduction, Incremental Search Method, Method of Bisection, Brent's Method, Newton–Raphson Method, Systems of Equations, Zeros of Polynomials.

<u>UNIT-III</u>

Numerical Differentiation: Introduction, Finite Difference Approximations, Richardson Extrapolation, Derivatives by Interpolation.

Numerical Integration: Introduction, Newton–Cotes Formulas, Romberg Integration, Gaussian Integration, Multiple Integrals.

Initial Value Problems: Introduction, Taylor Series Method, Runge–Kutta Methods, Stability and Stiffness, Adaptive Runge–Kutta Method, Bulirsch–Stoer Method.

Two-Point Boundary Value Problems: Introduction, Shooting Method, Finite Difference Method.

<u>UNIT -V</u>

Symmetric Matrix Eigenvalue Problems: Introduction, Jacobi Method, Inverse Power and Power Methods, Householder Reduction to Tridiagonal Form, Eigenvalues of Symmetric Tridiagonal Matrices.

Introduction to Optimization :Introduction, Minimization Along a Line, Conjugate Gradient Methods.

Text Books:

- 1. JaanKiusalaas, "NUMERICAL METHODS IN ENGINEERING WITH MATLAB", Cambridge university press, 2005.
- 2. Stephen J. Chapman, "MATLAB Programming for Engineers", Thomson learning, 4th edition.

Reference Books:

- 1. Ian Gladwell, Warren Ferguson Jr., James G. Nagy, "Introduction to Scientific Computing Using MATLAB", Lulu Publishing, 2011.
- 2. AlfioQuarteroni,FaustoSaleri, Paola Gervasio, "Scientific Computing with MATLAB and Octave", Springer International Publishing, 4 th edition, 2014.

NPTEL Link:

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_ma40/preview</u>
- 2. <u>https://nptel.ac.in/courses/111/102/111102137/</u>

Course Titl	e Comp	outer Sys	stem Ar	chitect	ure	Hono	urs Degre	ee		
Course Cod	e Category	Hours	s/Week		Credits	Maximum Marks				
2092402	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		4	-		4	40	60	100		
Mid Exam I	Mid Exam Duration: 90 MinEnd Exam Duration: 3Hrs									
Course Obj	ectives									
• To U	nderstand differen	nt paralle	el compu	iter mo	dels					
• To D	escribe the advan	ced proc	essor tec	chnolog	gies					
• To In	terpret memory h	ierarchy	and me	chanisn	ns for enfor	cing cache coh	erence			
• To C	ompare different	multipro	cessor s	ystem i	nterconnect	ing mechanism	ıs			
• To A	nalyze different p	oipelining	g technic	jues		C				
Course Out	comes: On succes	ssful con	pletion	of this	course, the	students will b	e able to			
CO1 Un	derstand different	parallel	comput	er mod	els.					
CO 2 Des	scribe the advanc	ed proce	ssor tech	nologie	es					
CO3 Inte	erpret memory hi	erarchy a	ind mecl	nanisms	for enforce	ing cache cohe	rence			
CO4 Co	npare different m	ultiproc	essor sys	stem in	terconnecti	ng mechanisms	5			
CO 5 An	alyze different pi	pelining	techniqu	ies		-				

<u>Unit- I</u>

Introduction: Parallel computer models – Evolution of Computer Architecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.

<u>Unit- II</u>

Processors and memory hierarchy: Advanced processor technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.

<u>Unit- III</u>

Multiprocessors system interconnects: Hierarchical bus systems, Cross bar switch and multi-port memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem

<u>Unit-IV</u>

Message Passing Mechanisms: Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques – Linear Pipeline processors and Nonlinear pipeline processors

<u>Unit-V</u>

Instruction pipeline design: Arithmetic pipeline deign -Super Scalar Pipeline Design. Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Finegrain Multicomputer- Fine-grain Parallelism. Dataflow and hybrid architecture

Text Book:

1. K. Hwang and NareshJotwani, Advanced Computer Architecture, Parallelism, Scalability, Programmability, TMH, 2010.

- 1. H P Hayes, "Computer Architecture and Organization", McGraw Hill, 1978.
- 2. K. Hwang &Briggs, "Computer Architecture and Parallel Processing", McGraw Hill International, 1986
- 3. M J Flynn, "Computer Architecture: Pipelined and Parallel Processor Design", Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, "Introduction to Parallel Processing", PHI, 2014.
- 5. P M Kogge, "The Architecture of Pipelined Computer", McGraw Hill, 1981.
- 6. P V S Rao, Computer System Architecture, PHI, 2009.
- 7. Patterson D. A. and Hennessy J. L., Morgan Kaufmann , "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann Pub, 4/e, 2010.

Course Title	Electro	U	tic Inter patibilit		e &	Honours Degree		
Course Code	Category	He	ours/We	ek	Credits	Maximum Marks		
2092403	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		4	-		4	40	60	100
Mid Exam Dur		End Exam	Duratio	n: 3Hrs				

Mid Exam Duration: 90 Min

- Course Objectives
 - To Understand the effect of EM noise in system environment and its sources.
 - To Identifying of EMI hotspot and various techniques like Grounding, Filtering, Soldering, etc
 - To Understanding the various aspects of shielding.
 - To Designing electronic systems that function without errors or problems related to electromagnetic compatibility

	• • •								
Course	Course Outcomes: On successful completion of this course, the students will be able to								
CO 1	Understand the effect of EM noise in system environment and its sources.								
CO 2	Identifying of EMI hotspot and various techniques like Grounding, Filtering, Soldering,								
	etc.								
CO 3	Understanding the various aspects of shielding.								
CO 4	Designing electronic systems that function without errors or problems related to								
	electromagnetic compatibility								

<u>UNIT - I</u>

Introduction to EMC: Definition, Sources, units, Electromagnetic principles-Faraday's and Ampere's equations, Gauss's equation, boundary conditions, Uniform plane wave, Transmission lines, Dipoles. High-frequency behavior of components-Conductors, Capacitors, inductors, resistors, mechanical switches and transformers.

<u>UNIT - II</u>

Crosstalk or near-field coupling: Capacitive coupling, inductive coupling, commonimpedance coupling, Crosstalk combinations, Coupling to shielded cables, Electromagnetic coupling in the far-field, field coupling.

<u>UNIT - III</u>

EM topology & grounding and Shielding: Solutions to EMC problems - Lay out and control of interfaces, Grounding or earthing, Electromagnetic Shielding. Shielded cables Filters and Surge protectors.

<u>UNIT - IV</u>

Solutions to EMC problems: Shielded cables Filters and Surge protectors, Lightning Protection- Currents, charges and fields, Buildings, Towers, Lightning safety.

EMC measurements and Standards: Testing and Difficulties, Intentional Electromagnetic Interference or IEMI.

Text Books:

- 1. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009
- 2. V.P. Kodali, "Engineering Electromagnetic Compatibility", IEEE Publication, S. Chand & Co. Ltd., New Delhi.
- 3. Ralph Morrison, "Grounding and Shielding: Circuits and Interference", John Wiley & Sons

- 1. Henry W. Ott, "Electromagnetic Compatibility Engineering", Wiley, 2009.
- 2. Clayton R. Paul, "Introduction to Electromagnetic Compatibility", Wiley, 2006.

Course '	Title		Analog	IC Desi	gn		Hono	urs Degre	e	
Course	Code	Category	Hours/Week Ci			Credits	Maxin	num Mar	ks	
2092404		РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			4	-		4	40	60	100	
Mid Exa	Mid Exam Duration: 90 MinEnd Exam Duration: 3Hrs									
Course (Objecti	ves								
• T	o Unde	erstand the conc	epts of A	Analog N	MOS de	vices and o	current mirror	circuits		
• T	o Desig	gn different con	figuratio	on of An	nplifiers	and feedb	ack circuits			
T	o Desc	ribe the charact	eristics	of freque	ency res	ponse of tl	ne amplifier an	d its noise	e	
Te	o Anal	yze te stability	and freq	uency co	ompensa	tion techn	iques of Op-A	mp Circui	ts	
• T	o Cons	truct switched	capacito	circuits	and PL	Ls		-		
		nes: On success					students will b	e able to		
CO 1		stand the conce								
CO 2	Design	n different conf	iguration	of Am	plifiers a	and feedba	ck circuits			
	v	be the characte	•					its noise		
		ze the stability					-		ts	
CO 5	-	ruct switched ca	-		-		<u> </u>	1		

Introduction to Analog IC Design and Current Mirrors: Concepts of Analog Design – General consideration of MOS devices – MOS I/V Characteristics – Second order effects – MOS device models. Basic current mirrors- Cascode current mirrors- Active current mirrors-Large and Small signal analysis- Common mode properties.

<u>UNIT - II</u>

Amplifiers and Feedback: Basic Concepts – Common source stage- Source follower-Common gate stage- Cascode stage. Single ended and differential operation- Basic Differential pair- Common mode response- Differential pair with MOS loads- Gilbert Cell. Feedback- General Consideration of feedback circuits- Feedback topologies- Effect of loading- Effect of feedback on Noise.

<u>UNIT - III</u>

Frequency Response of Amplifiers and Noise: General considerations- Miller Effect and Association of Poles with Nodes, Common source stage- Source followers- Common gate stage- Cascode stage- Differential pair. Noise- Statistical characteristics of noise- Types of noise- Representation of noise in circuits- Noise in single stage amplifiers- Noise in differential pairs- Noise Bandwidth.

<u>UNIT - IV</u>

Operational Amplifier Stability and Frequency Compensation: General Considerations-One and Two Stage Op Amps- Gain Boosting- Comparison- Common mode feedback- Input range limitations- Slew rate- Power Supply Rejection- Noise in Op Amps- General consideration of stability and frequency compensation- Multi pole system- Phase margin-Frequency compensation- Compensation of two stage op Amps- Other compensation techniques.

<u>UNIT - V</u>

Switched Capacitor Circuits and PLLs:General Considerations- Sampling switches-Switched Capacitor Amplifiers-Switched Capacitor Integrator-Switched Capacitor Common mode feedback. Phase Locked Loops-Simple PLL-Charge pump PLLs-Non ideal Effects in PLLs-Delay locked loops- its Applications.

Text Book:

1. Behzad Razavi, Design of Analog CMOS Integrated Circuits^{II}, Tata McGraw Hill, 2001, 33rd re-print, 2016.

- 1. Phillip Allen and Douglas Holmberg, CMOS Analog Circuit Design Second Edition, Oxford University Press, 2004.
- 2. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2009
- Grebene, Bipolar and MOS Analog Integrated circuit designl, John Wiley & sons, Inc., 2003

Course	Title		Digital	IC Desi	gn		Hono	urs Degre	e			
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
20924	405	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			4	-		4	40	60	100			
Mid Exa	am Dur	ation: 90 Min					End Exam	n Duration	n: 3Hrs			
Course	Objectives											
• T	o Unde	erstand the basic	es of MC)S Desig	gn.							
• T	o Unde	erstand the basic	es of Co	mbinatio	onal MC	OS Logic C	circuits and the	basics of				
S	lequenti	al MOS Logic	Circuits.									
• T	o Unde	erstand concepts	s of diffe	erent inte	erconne	ction techr	niques.					
• T	To Desc	ribe concepts of	f Semico	onductor	memor	ries and RA	AM array Orga	nization.				
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to				
CO 1	Under	stand the basics	of MOS	S Desigr	1							
CO 2	Under	stand the basics	of Com	binatior	nal MOS	S Logic Ci	rcuits and the b	basics of				
	Seque	ntial MOS Logi	c Circui	ts								
CO 3	Analyz	ze concepts dig	ital integ	grated ci	rcuits a	nd its appli	cations					
CO 4	Under	stand concepts	of diffe	rent inte	rconnec	tion techni	iques					
CO 5	Descri	be concepts of	Semicor	nductor 1	nemori	es and RA	M array Organ	ization				

MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates, Multiplers.

UNIT-III:

Sequential MOS Logic Circuits: Behaviour of bi stable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-IV:

Dynamic Logic Circuits: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits. Interconnect:Capacitive Parasitics, Resistive Parasitics, InductiveParasitics, Advanced Interconnect Techniques, clock distribution networks, clock delays, clock skew and Jitter.

UNIT-V:

Flash Memory, RAM array organization. Semiconductor Memories: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory-NOR flash and NAND flash.

Text Books:

- 1. Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 2nd Ed., PHI.
- 2. Digital Integrated Circuit Design Ken Martin, Oxford University Press, 2011.
- 3. Modern VLSI Design-Wayne Wolf, fourth edition, copyrights 2009.

Course Title	e Biom	edical S	ignal Pr	ocessin	g	Hono	urs Degre	ee				
Course Cod	e Category	He	ours/We	ek	Credits	Maxin	num Mar	ks				
2092406	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
		4	-		4	40	60	100				
Mid Exam D	ouration: 90 Min					End Exam	n Duratio	n: 3Hrs				
Course Obje	ctives											
• To un												
EOG s	EOG signals, modern filtering techniques.											
• To apt	To apply filters to remove noise, signal compression techniques & averaging technique on											
	dical signals to ex			-		-	00	1				
	alyze the nature					e		letection				
	ques for ECG, EE			U		• ·						
	velop an interest											
	1	to sinu	late the	models	and vanu	ate its function		lear time				
system	18.											
Course Out	omes: On success	sful com	pletion	of this c	ourse, the	students will b	e able to					
CO1 Und	lerstand the origi	n, prope	erties of	biomed	lical signa	ls like ECG, l	EEG, PC	G, ENG,				
	G signals, modern				U							
CO 2 Apr	bly filters to remo	ve noise	, signal	compre	ssion techr	niques & avera	iging tech	nique on				
	medical signals to		-	-		-		1				
	lyze the nature					_		detection				
	niques for ECC			0		1						
	iniques.	-			C	Ŧ		0				
	elop an interest	to simul	ate the	models	and validation	ate its function	nality in 1	eal time				
	ems.							•				
595												

Preliminaries: Concept of Biological signals – Electrical, Mechanical, Chemical, Magnetic, Optical etc. Origin of electrical signal from Biological cell – Structure of Biological cell, Characteristics of Cell membrane, Distribution and movement of ions across the cell membrane, Generation of Biological cell Action Potential. Concept of Electrocardiogram (ECG), Electroencephalogram (EEG), Phonocardiogram (PCG), Electromyogram (EMG), Electroneurogram (ENG), Electrooculogram (EOG), Respiratory signals etc.

<u>UNIT – II</u>

Signal Conditioning: Band limiting of different Biological signals, Representation of biological signals in analog, discrete and digital forms.

Filtering for Removal of artifacts - Statistical Preliminaries, Time domain filtering -Synchronized Averaging, Moving Average Filter to Integration, Derivative-based operator, **Frequency Domain Filtering** – FIR and IIR methods for implementing Notch, band selective filters, Weiner, Adaptive Filtering concepts.

Electrocardiogram (ECG) Analysis: Concepts of morphological and rhythm analysis, Different types of arrhythmias, Derivative based Approaches for QRS Detection, Pan Tompkins Algorithm, Concepts of detecting the P, T waves, PR, ST intervals, QRS duration, etc. Heart Rate Variability (HRV) study and its importance.

<u>UNIT - IV</u>

EEG, EMG signals Analysis: Basics of EEG and EMG signals. Signal strength, Signal entropy in time and frequency domain, Correlation coefficient, Envelop Extraction, Root Mean Square value, Zero-crossing rate, Form factor, Periodogram, Minimum phase correspondent, Power Spectral Density concepts in analyzing EEG and EMG signals.

<u>UNIT - V</u>

Modelling of Biomedical Systems: Motor unit firing pattern, Cardiac rhythm, Formants and pitch of speech, Point process, Parametric system modelling, Autoregressive model, Autocorrelation method, Application to random signals, Computation of model parameters, Levinson-Durbin algorithm, Computation of gain factor, Covariance method, Spectral matching and parameterization, Model order selection, Relation between AR and Cepstral coefficients, ARMA model, Sequential estimation of poles and zeros.

Text Books

- 1. R M Rangayyan "Biomedical Signal Analysis: A case Based Approach", IEEE Press, John Wiley & Sons. Inc, 2002.
- 2. Willis J. Tompkins, "Biomedical Digital Signal Processing", EEE, PHI, 2004.
- 3. D C Reddy "Biomedical Signal Processing: Principles and Techniques", Tata McGraw-Hill Publishing Co. Ltd, 2005.

- 1. Suresh R Devasahayam, "Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing", Springer, 3rd Edition, 2019.
- 2. J G Webster "Medical Instrumentation: Application & Design", John Wiley & Sons Inc., 2001.

Course	Title	Embedde	d Syster	n Desig	n with .	ARM	Hono	urs Degre	e				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks				
20924	407	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			4	-		4	40	60	100				
Mid Exa	am Dur	Duration: 90 Min End Exam Duration: 3Hrs											
Course	e Objectives												
•]	Го unde	rstand architect	ures and	l instruc	tion set	of ARM c	ontroller.						
•]	Γo Write	e programs usir	ng ARM	instruct	ions.								
•]	To Inter	face various sei	nsors and	d actuate	ors with	ARM con	troller.						
•]	Го Desi	gn an Embedde	d systen	1.									
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1	Under	stand architectu	ires and	instructi	ion set c	of ARM co	ntroller.						
CO 2	Write	Write programs using ARM instructions.											
CO 3	Interfa	Interface various sensors and actuators with ARM controller.											
CO 4	Design	Design an Embedded system.											

Introduction To Embedded Systems: Introduction, Design Considerations of Embedded Systems, Microprocessors and Microcontrollers, Architecture of ARM Microcontroller, ARM Instruction Set.

<u>UNIT - II</u>

ARM Board: The STM32F401 Nucleo Board, PWM And Interrupt on STM32F401, Digital To Analog Conversion, Analog To Digital Conversion, Output Devices, Sensors and Actuators.

<u>UNIT - III</u>

Interfacing-I: Microcontroller Development Boards, EMbed C Programming Environment, Interfacing With STM32F401 Board, Interfacing With Arduino Uno, Interfacing 7-Segment LED And LCD Displays, Serial Port Terminal Application.

<u>UNIT - IV</u>

Interfacing-II: Interfacing Temperature Sensor, Interfacing LDR Light Sensor, Interfacing Speaker, Interfacing Microphone, Design of Control System, Interfacing Relay, Interfacing DC Motor, Interfacing Multiple Sensors And Relay.

<u>UNIT - V</u>

Interfacing-III: Introduction, GSM And Bluetooth, Design of A Home Automation System, Design Of A Simple Alarm System Using Touch Sensor, Accelerometer, Interfacing Bluetooth, Interfacing Gas Sensor.

<u>Text Books:</u>

- 1. F. Vahid and T. Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", Wiley India Pvt. Ltd., 2002.
- 2. A.N. Sloss, D. Symes and C. Wright, "ARM System Developer's Guide: Design and Optimizing System Software", Morgan Kaufman Publishers, 2004.

Reference Books:

- 1. W. Wolf, "Computers as Components: Principles of Embedded Computing System Design", Morgan Kaufman Publishers, 2008.
- 2. Steve Furber, "ARM System-on-Chip Architecture", Addison Wesley, 2nd edition.

NPTEL Links:

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_cs15/preview</u>
- 2. https://nptel.ac.in/courses/106/105/106105193/

Course	Title	Inform	nation 7	Cheory	&Codir	ıg	Hono	urs Degre	e				
Course	Code	Category	Ho	ours/We	eek	Credits	Maxin	num Mar	ks				
20924	408	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
	4 4 40 60 100												
Mid Exa	ım Dur	Duration: 90 Min End Exam Duration: 3Hrs											
Course (e Objectives												
• T	'o under	rstand various i	nformat	ion mea	sures								
• T	o descr	ibe various info	ormation	n channe	els								
• T	'o use d	ifferent source	code alg	gorithms									
• T	To Anal	yze quantizatio	n and tra	ansform	coding.								
Course (Outcon	nes: On success	ful com	pletion	of this c	ourse, the	students will b	e able to					
CO 1	Unders	stand various ir	formati	on meas	ures								
CO 2	Describe various information channels												
CO 3	Use different source code algorithms												
CO 4	Analyze quantization and transform coding.												

Information Theory:Introduction to Information Theory and Coding, Definition of Information Measure and Entropy, Extension of An Information Source and Markov Source, Adjoint of An Information Source, Joint and Conditional Information Measure, Properties of Joint and Conditional Information Measures and A Morkov Source Properties of Joint and Conditional Information measures and a Markov source.

<u>UNIT - II</u>

Source Coding: Source coding theorem, Prefix Codes, Kraft McMillan Inequality property, Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon Fano Encoding Algorithm, Huffman codes, Extended Huffman coding, Arithmetic Coding.

<u>UNIT - III</u>

Information Channels I:Introduction to Information Channels, Equivocation and Mutual Information, Properties of Different Information Channels, Reduction of Information Channels, Properties of Mutual Information and Introduction to Channel Capacity, Calculation of Channel Capacity for Different Information Channels, Shannon's Second Theorem.

<u>UNIT - IV</u>

Information Channels II: Error Free Communication Over Noisy Channel, Error Free Communication Over A Binary Symmetric Channel and Introduction to Continuous Sources and Channels, Differential Entropy and Evaluation of Mutual Information for Continuous Sources and Channels, Channel Capacity of A Band Limited Continuous Channel

Quantization: Introduction to Quantization, Lloyd-Max Quantizer, Companded Quantization, Variable Length Coding and Problem Solving in Quantizer Design, Vector Quantization, Transform Coding-Idea of Transform Coding, Choosing the weights of basis vector, forward transform, Energy preserving, Optimal bit allocation.

Text Books:

- 1. T. M. Cover, J. A, Thomas, "Elements of information theory," Wiely Interscience, 2 nd Edition, 2006
- 2. R. W. Hamming, "Coding and information theory," Prentice Hall Inc., 1980.

- 1. Bose, "Information Theory, Coding and Cryptography", Mcgraw hill Education
- 2. S. Gravano, "Introduction to Error Control Codes", OUP Oxford (24 May 2001)
- 3. Robert B. Ash, "Information Theory", Dover Publications (November 1, 1990)
- 4. Todd k Moon, "Error Correction Coding: Mathematical Methods and Algorithms", Wiley, 2005.

Course	Title	DSP Al	gorithm	s & Ar	chitectu	ires	Hono	urs Degre	e			
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
20924	409	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			4	-		4	40	60	100			
Mid Exa	m Duration: 90 Min End Exam Duration: 3Hrs											
Course	Objecti	ves										
• T	o under	rstand Aspects	of archit	ectures.								
• T	o under	rstand Memory	mapped	l acceler	ators							
• T	o analy	yze DSP algorit	hms									
• T	Co map t	the algorithms	o archit	ectures								
Course	Outcon	nes: On success	ful com	pletion of	of this c	course, the	students will b	e able to				
CO 1	Unders	stand Aspects of	f archite	ectures.								
CO 2	Unders	stand Memory	mapped	accelera	ators							
CO 3	Analyze DSP algorithms											
CO 4	Map the algorithms to architectures											

DSP System Models: Introduction- Review of digital logic, Timing and Power in digital circuits, Quality metrics and bounds - Implementation Costs and Metrics, Architecture cost components, Examples of Architectures, Multi-objective Optimization.

Number representation - Scientific notation and Floating point

FIR and IIR Implementation: FIR filter, Serial FIR filter architectures, Simple programmable architecture, Block diagrams and SFGs, Dataflow Graphs, Iteration period, FIR filter iteration period, IIR filter iteration period, Computation Model

<u>UNIT - II</u>

Dedicated hardware and transforms – Implementation, Constraint analysis for IPB computation, Motivational examples for IPB, General IPB computation, Sample period calculation, Parallel architecture, Odd-even register reuse, Power consumption, Pipelining, Pipelining FIR filter, Time-invariant systems, Valid pipelining examples, Feed forward cut-sets, Balanced pipeline, Retiming basic concept,Example and uses of retiming

Resource sharing: adder example, Changing iteration period, Hardware assumptions and constraint analysis, Mathematical formulation, Examples with formulation, Example: Biquad filter, Hardware architecture, Review biquad folding sets, Completebiquad hardware,

<u>UNIT - III</u>

Scheduling: Obtaining a folding schedule, ASAP schedule, Utilization Efficiency, ALAP schedule, Iteration period bound and scheduling, Retiming for scheduling, Blocked schedules, Overlapped schedules, mproved blocked schedule, Allocation, Binding and Scheduling, Heuristic approaches to scheduling, Mathematical formulation, ILP formulation, List scheduling, Hardware model, Force Directed Scheduling.

Programmable Sytems: Software Compilation, Optimization Examples, Loop optimizations, Software pipelining, FFT Optimization, CPUs and FPGAs, FFT on FPGA board, Understanding ELF files

<u>UNIT - V</u>

Memory and Communication Systems: On-chip communication basics, Many-to-Many communication, AXI bus handshaking, HW accelerator for FPGA, DMA and arbitration, Network-on-chip basics, NoC - topologies and metrics, NoC- routing, NoC - switching and flow control,

Specialized Architectures: Systolic Arrays – Background, CORDIC algorithm, Parallel implementation of FIR filters, Unfolding Transformation, Look ahead Transformation, Introduction to GPUs and Matrix multiplication

Text Books:

- 1. KK Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Wiley, NY, 1999.
- 2. Lars Wanhammar, Academic Press, 1999.

- Peter Pirsch, "Architectures for Digital Signal Processing", 2nd edition, John Weily, 2007
- 2. B. Venkataramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", 2 Edition, TMH, 2004.
- 3. Jervis, "Digital Signal Processing- A practical approach", 4th edition, Pearson Education, 2004.

Course T	itle	Lov	w Power	· VLSI I	Design		Hono	urs Degre	e			
Course Co	ode	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
209241	0	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			4	-		4	40	60	100			
Mid Exam	n Duration: 90 Min End Exam Duration: 3Hrs											
Course Of	Objectives											
• To und	lerstand	leakage sour	rces and	reductio	on techn	iques.						
• To cha	racterize	e and model	power c	onsump	tion & u	inderstand	the basic analy	sis metho	ods.			
To ider	ntify the	sources of p	ower di	ssipatior	n in digi	tal IC syste	ems & underst	and the in	npact of			
power	on syste	m performa	nce and	reliabilit	y.				_			
Course Ou	itcomes	: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to				
CO1 U	Indersta	nd leakage s	ources a	nd reduc	ction tec	hniques.						
CO 2 C	Character	rize and mod	lel powe	r consur	nption &	k understa	nd the basic an	alysis me	thods.			
CO3 Id	Identify the sources of power dissipation in digital IC systems & understand the impact											
	of power on system performance and reliability.											
II	•	2 1				•						

Technology & Circuit Design Levels: Sources of power dissipation in digital ICs, degree of freedom, recurring themes in low-power, emerging low power approaches, dynamic dissipation in CMOS, effects of Vdd&Vt on speed, constraints on Vt reduction, transistor sizing & optimal gate oxide thickness, impact of technology scaling, technology innovations.

<u>UNIT -II</u>

Low Power Circuit Techniques: Power consumption in circuits, flip-flops & latches, high capacitance nodes, energy recovery, reversible pipelines, high performance approaches.

<u>UNIT -III</u>

Low Power Clock Distribution: Power dissipation in clock distribution, single driver Versus distributed buffers, buffers & device sizing under process variations, zero skew Vs. Tolerable skew, chip & package co-design of clock network.

<u>UNIT -IV</u>

Logic Synthesis for Low Power estimation techniques: Power minimization techniques, low power arithmetic components- circuit design styles, adders, multipliers.

<u>UNIT -V</u>

Low Power Memory Design: Sources & reduction of power dissipation in memory subsystem, sources of power dissipation in DRAM & SRAM, low power DRAM circuits, low power SRAM circuits.

Text Books

- 1. P. Rashinkar, Paterson and L. Singh, "Low Power Design Methodologies", Kluwer
- 2. Academic, 2002
- 3. Kaushik Roy, Sharat Prasad, "Low power CMOS VLSI circuit design", John Wiley
- 4. sonsInc.,2000.
- 5. J.B.Kulo and J.H Lou, "Low voltage CMOS VLSI Circuits", Wiley, 1999.

- 1. A.P.Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design",
- 2. Kluwer,1995
- 3. Gary Yeap, "Practical low power digital VLSI design", Kluwer, 1998.

Course	Title	RI	Integr	ated Cir	rcuits		Hono	urs Degre	e			
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
20924	11	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			4	-		4	40	60	100			
Mid Exa	m Dur	ation: 90 Min					End Exam	Duration	n: 3Hrs			
Course (Objecti	ves										
• T	• To understand different RF Components such as Passive components, Microstri											
Т	ransmi	ssion Line.										
• T	o desig	n RF Amplifie	s-High	gain, Lo	w gain l	Minimum	Noise Amplifi	ers.				
• T	o desig	n of RF Oscilla	tors.									
• T	o desig	n of RF Conve	rters, Mi	xers.								
• T	o desig	gn of Matching	network	s for RI	F Circuit	ts.						
Course (Jutcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to				
CO 1		stand different										
	Transr	nission Line.		-			_	-				
CO 2	Design	RF Amplifiers	s-High g	ain, Lov	v gain N	linimum N	Noise Amplifie	rs.				
CO 3												
CO 4	Design of RF Converters, Mixers.											
CO 5	Design of Matching networks for RF Circuits.											

RF systems: basic architectures, Transmission media and reflections, Maximum power transfer, Passive RLC Networks - Parallel RLC tank, Q, Series RLC networks, matching, Pi match, T match, Passive IC Components, Interconnects and skin Effect, Resistors, capacitors, Inductors

<u>UNIT - II</u>

Review of MOS devices: Distributed Systems- transmission lines, reflection coefficient, The wave equation, examples, Lossy transmission lines, Smith charts – plotting gammaTime Domain Methods for Speech Processing: Time domain parameters of speech, methods for extracting the parameters: Zero crossings, Auto-correlation function, pitch estimation. Analysis and Synthesis of Pole-Zero Speech Models

<u>UNIT - III</u>

High Frequency Amplifier Design: Bandwidth estimation using open-circuit time constants, Bandwidth estimation using short-circuit time constants, Rise time, delay and bandwidth, Zeros to enhance bandwidth, Shunt-series amplifiers, tuned amplifiers, Cascaded amplifiers. Noise- Thermal noise, flicker noise review, Noise figure, LNA Design - Intrinsic MOS noise Parametes, Power match versus noise match, Large signal performance, design examples & Multiplier based mixers. Mixer Design – Sub sampling mixers.

RF Power Amplifiers: Class A, AB, B, C Amplifiers, Class D, E, F amplifiers, RF Power amplifier design examples. Voltage controlled oscillators – Resonators, Negative resistance Oscillators.

UNIT - V

Phase locked Loop: Linearized PLL models, Phase detectors, charge Pumps, Loop filters, PLL design Examples. Frequency synthesis and oscillators - Frequency division, integer-N synthesis, Fractional frequency synthesis. Phase noise - General considerations, Circuit examples. Radio architectures - GSM radio architectures, CDMA, UMTS radio architectures

Text Books:

- 1. Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 2004.
- 2. BehzadRazavi, "RF Microelectronics", Prentice Hall, 1997.

- 1. Ellinger, Frank, "Radio Frequency Integrated Circuits and Technologies", Springer, 2008.
- 2. Cam Nguyen, "Radio-Frequency Integrated-Circuit Engineering", John Wiley & Sons, 2015.

Course 7	Title	Principles of OFDM Wire	U			MIMO/	Hono	urs Degre	e		
Course (Code	Category	H	ours/We	eek	Credits	Maxin	num Mar	ks		
20924	12	РСС	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsT				
			4	-		4	40	60	100		
Mid Exa	m Dui	ration: 90 Min					End Exam	Duratio	n: 3Hrs		
Course C)bjecti	ives									
• To	o unde	rstand MIMO (Commur	nication	Systems	and OFI	DM.				
• To	o comp	pare MIMO Sys	stems wi	th Singl	e Input	Single Out	put (SISO) Sys	stems.			
• To	o analy	vse the Informa	tion The	oretic ad	dvantage	es of MIM	O Systems.				
• To	o analy	vse the spatial n	nultiplex	ing prop	perties o	f MIMO .					
Course C	Jutcon	nes: On succes	sful com	pletion	of this c	ourse, the	students will b	e able to			
CO 1	Under	stand MIMO C	ommun	ication S	Systems	and OFD	M				
CO 2	Comp	Compare MIMO Systems with Single Input Single Output (SISO) Systems									
CO 3	Analyse the Information Theoretic advantages of MIMO Systems										
CO 4	Analyse the spatial multiplexing properties of MIMO										

MIMO Introduction: Basics of Estimation, Maximum likelihood, Information Theoretic aspects of MIMO Review of SISO fading communication channels, MIMO channel models, Classical i.i.d. and extended channels, Frequency selective and correlated channel models, Capacity of MIMO channels, Ergodic and outage capacity, Capacity bounds and Influence of channel properties on the capacity.

<u>UNIT - II</u>

MIMO Diversity: Spatial Multiplexing Sources and types of diversity, analysis under Rayleigh fading, Diversity and channel knowledge. Alamouti space time code, MIMO spatial multiplexing.Space time receivers. ML, ZF, MMSE and Sphere decoding, BLAST receivers and Diversity multiplexing trade-off.

<u>UNIT- III</u>

Space Time Trellis Codes: Representation of STTC, shift register, generator matrix, statetransition diagram, trellis diagram, Code construction, Delay diversity as a special case of STTC and Performance analysis.

<u>UNIT - IV</u>

Wireless fading channel Estimation: Cramer-rao bound for Estimation, vector parameter Estimation, Properties of Estimation, Multi-antenna Wireless channel Estimation. MEMO Wireless channel Estimation, Error covariance of Estimation, Equalization for frequency selective channels.

OFDM Estimation: sequential estimation, Minimum Mean-square Error (MMSE), Estimate Gaussian parameter, Wireless sensor network, wireless fading channel estimation.

MMSE for MIMO Channel estimation properties of Estimation, MMSE for equalization of wireless Channel, MMSE of OFDM Channel estimation.

Text Books :

- 1. David Tse and PramodViswanath, "Fundamentals of Wireless Communication", Cambridge University Press 2005
- 2. Hamid Jafarkhani, "Space-Time Coding: Theory and Practice", Cambridge University Press 2005.

- 1. Paulraj, R. Nabar and D. Gore, "Introduction to Space-Time Wireless Communications", Cambridge University Press 2003
- 2. E.G. Larsson and P. Stoica, "Space-Time Block Coding for Wireless Communications", Cambridge University Press 2008
- 3. EzioBiglieri , Robert Calderbank et al "MIMO Wireless Communications" Cambridge University Press 2007

Course 7	Гitle	Statis	tical Si	gnal Pr	ocessing	ç.	Hono	urs Degre	e	
Course (Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks	
209243	13	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			4	-		4	40	60	100	
Mid Exa	m Dur	ation: 90 Min					End Exam	Duratio	n: 3Hrs	
Course O	bjecti	ves								
• To) genei	alize the proper	ties of s	statistica	l model	s in the an	alysis of signal	ls using St	tochastic	
pr	ocesse	s.								
• To	o diffei	entiate the pror	ninence	of vario	ous spect	tral estima	tion technique	s for achie	eving	
hig	gher re	esolution in the	estimati	on of po	wer spe	ctral densi	ty.			
• To	o outlir	ne various parar	netric es	stimation	n metho	ds to accor	nplish the sign	al modeli	ng even	
at	higher	order statistics								
• To	o desig	n and developn	nent of c	ptimum	filters u	using class	ical and adapti	ve algorit	hms.	
• To	o extra	polate the impo	rtance o	f least s	quares to	echniques	and decompos	ition meth	nods in	
an	alyzin	g the signal esti	mations							
Course O	outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to		
CO 1	Genera	alize the proper	ties of st	tatistical	models	in the ana	lysis of signals	s using Sto	ochastic	
]	proces	ses.								
CO 2	Differe	entiate the prom	inence	of vario	us spect	ral estimat	ion techniques	for Achie	eving	
]	higher	resolution in th	e estima	ation of	power s	pectral der	nsity.			
CO 3	Outlin	e various param	etric est	timation	method	ls to accon	plish the signa	al modelir	ng even	
	at high	er order statisti	cs.							
CO 4	Design and development of optimum filters using classical and adaptive algorithms.									
CO 5	Extrap	olate the impor	tance of	least sq	uares te	chniques a	and decomposit	tion metho	ods in	
	analyz	ing the signal e	stimatio	ns.						

Introduction: Stationary processes: Strict sense and wide sense stationarity; Correlation and spectral analysis of discrete-time wide sense stationary processes, white noise, response of linear systems to wide-sense stationary inputs, spectral factorization.

<u>UNIT - II</u>

Parameter estimation: Properties of estimators, Minimum Variance Unbiased Estimator (MVUE Cramer Rao bound, MVUE through Sufficient Statistics, Maximum likelihood estimation- properties. Bayseaen estimation- Minimum Mean-square error (MMSE) and Maximum a Posteriori (MAP) estimation.

<u>UNIT - III</u>

Signal estimation in white Gaussian noise– MMSE, conditional expectation; Linear minimum mean-square error(LMMSE) estimation, orthogonality principle and Wiener Hoff equation, FIR Wiener filter, linear prediction-forward and backward predictions, Levinson-

Durbin Algorithm, application –linear prediction of speech, Non-causal IIR wiener filter, Causal IIR Wiener filtering.

<u>UNIT - IV</u>

Iterative and adaptive implementation of FIR Wiener filter: Steepest descent algorithm, LMS adaptive filters, convergence analysis, least-squares(LS) method, Recursive LS (RLS) adaptive filter, complexity analysis, application- neural network.

<u>UNIT - V</u>

Kalman filters: Gauss -Markov state variable models; innovation and Kalman recursion, steady-statebehaviour of Kalman filters.

Text Books:

- 1. M. H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons, Inc., 2002.
- 2. S. M. Kay, "Fundamentals of Statistical Signal Processing: Estimation Theory", Prentice Hall,1993.
- 3. D.G. Manolakis, V.K. Ingle and S.M. Kogon, "Statistical and Adaptive Signal Processing", McGraw Hill, 2000.

- 1. Umberto Spagnolini, "Statistical Signal Processing in Engineering", John Wiley & Sons, 2018.
- 2. Robert M. Gray,Lee D. Davisson, "An Introduction to Statistical Signal Processing", Cambridge University Press, 2004.

Course	Title	Op-Amp P Simula		Applica d Implei			Hono	urs Degre	e			
Course	Code	Category	He	ours/We								
20924	414	PCC L T P C Continuous Internal Assessment T										
	4 4 40 60 100											
Mid Exa	am Dur	ation: 90 Min					End Exam	Duratio	n: 3Hrs			
Course	Objecti	ves										
• T	o under	rstand the opera	ational a	mplifier	s with li	near integr	rated circuits.					
• T	o Ident	ify positive fee	dback ai	nplifier	applicat	ions of op	-amp.					
• T	To Desig	gn circuits using	g operati	ional am	plifiers	for various	s applications.					
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to				
CO 1	D1 Understand the operational amplifiers with linear integrated circuits.											
CO 2	2 Identify positive feedback amplifier applications of op-amp.											
CO 3												

Introduction to Operational Amplifier: Data sheets of Operational amplifier, ideal Characteristics, effect of loading, input impedance, concept of hysteresis, need of hysteresis for switching circuits.

<u>UNIT -II</u>

Op-amp practical applications: Analog to digital converters, Digital to analog converters, function generator capable of generating square wave and triangular wave.

<u>UNIT -III</u>

Positive feedback amplifier op-amp applications: Window comparator, Inverting Schmitt trigger, non-inverting Schmitt trigger, Astable multivibrator, Monostable multivibrator, voltage controlled voltage source.

UNIT -IV

Temperature controlled applications using op-amp: Design and development of temperature controlled circuit using op-amp for ON/OFF, Implementation of PI controller,

UNIT -V

Data acquisition applications using op-amp: Signal conditioning unit for thermocouple, Introduction to ECG experiment, peak detector and thresholding for ECG signal conditioning.

Text Books:

- 1. Gray, Hurst, Lewis, and Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 5th edition, 2009
- 2. Horowitz and Hill, "The Art of Electronics", Cambridge Univ. Press, 1999
- 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, 2001

- 1. Phillip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford University Press, 2nd edition, 2002
- 2. Johan H. Huijsing, "Operational Amplifiers Theory and Design", 3rd edition, Springer
- 3. Razavi, "Fundamentals of Microelectronics", John Wiley, 2008.

Course	Title		Multi	rate DS	Р		Hono	urs Degre	e		
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks		
20924	15	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			4	-		4	40	60	100		
Mid Exa	ım Dur	ation: 90 Min					End Exam	Duratio	n: 3Hrs		
Course (Dbjectives										
• To	unders	tand the conce	pts of sa	mpling	rate cor	versions,	Decimation an	d Interpo	lation as		
par	t of Sig	nal Processing	techniqu	ies.				-			
• To	describ	e basic samplin	ng rate c	onversio	on algori	ithms.					
		sampling rate of	0		U						
	U	e the interpolate									
-	•	nes: On success			of this c	ourse, the	students will b	e able to			
CO 1		rstand the conc		•					lation as		
			•	1 0			2 comunication un	in morpo	and as		
CO 2	part of Signal Processing techniques.										
	Describe basic sampling rate conversion algorithms.										
CO 3											
CO 4	Analyze the interpolated FIR filters.										

Introduction: Overview of Sampling and Reconstruction, Review of Discrete-Time Systems and Review of digital filters

<u>UNIT - II</u>

Fundamentals of Multirate Theory: The sampling theorem – sampling at sub 88 yquist rate – Basic Formulations and schemes. Basic Multirate operations- Decimation and Interpolation – Digital Filter Banks- DFT Filter Bank- representation Maximally decimated filter banks: Polyphase representation – Errors in the QMF bank- Perfect reconstruction (PR) QMF Bank – Design of an alias free QMF Bank decimator.

<u>UNIT - III</u>

Filter Banks I:M-channel perfect reconstruction filter banks Uniform band and non uniform filter bank - tree structured filter bank- Errors created by filter bank system- Polyphase representation- perfect reconstruction systems.

<u>UNIT - IV</u>

Filter Banks II:Perfect reconstruction (PR) filter banks Paraunitary PR Filter Banks- Filter Bank Properties induced by paraunitarity- Two channel FIR paraunitary QMF Bank- Linear phase PR Filter banks- Necessary conditions for Linear phase property- Quantization Effects: -Types of quantization effects in filter banks. - coefficient sensitivity effects, dynamic range and scaling.

Filter Banks III:Cosine Modulated filter banks Cosine Modulated pseudo QMF Bank- Alas cancellation- phase - Phase distortion- Closed form expression- Polyphase structure- PR Systems

Text Books

- 1. P.P. Vaidyanathan. "Multirate systems and filter banks." Prentice Hall.PTR. 1993.
- 2. N.J. Fliege. "Multirate digital signal processing ."John Wiley 1994.
- 3. Sanjit K. Mitra. " Digital Signal Processing: A computer based approach." McGraw Hill. 1998.

- 1. R.E. Crochiere. L. R. "Multirate Digital Signal Processing", Prentice Hall. Inc. 1983.
- 2. J.G. Proakis. D.G. Manolakis. "Digital Signal Processing: Principles. Algorithms and Applications", 3rd Edn.Prentice Hall India, 1999. EC6301: Random Process.

Course	Title	Ľ	igital V	LSI Te	sting		Hono	urs Degre	e				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks				
20924	416	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			4	-		4	40	60	100				
Mid Exa	am Dur	n Duration: 90 Min End Exam Duration: 3Hrs											
Course	irse Objectives												
• 7	Fo under	rstand the diffe	rent type	es of test	ting and	its import	ance						
• 7	Го apply	design for test	ability a	nd desig	gn rules.								
• 7	Fo ident	ify various test	pattern	generati	ons								
• 7	Го сотр	are the fault m	odels an	d test te	chnique	S							
Course	Outcon	nes: On succes	sful com	pletion	of this c	ourse, the	students will b	e able to					
CO 1	Unde	rstand the diffe	rent type	es of tes	ting and	its import	ance						
CO 2	Apply	Apply design for testability and design rules.											
CO 3	Identify various test pattern generations												
CO 4	Compare the fault models and test techniques												

Introduction to Testing: Introduction, Importance, Challenges, Levels of abstraction, Fault Models, Types of Testing, Fault Modeling: Defects, Errors and Faults, Functional Versus Structural Testing.

<u>UNIT - II</u>

Design for Testability: Introduction, Testability Analysis, DFT Basics, Scan cell design, Scan Architecture, Design for Testability: Scan design rules, Scan design flow Fault Simulation: Introduction, Simulation models

<u>UNIT - III</u>

Fault Simulation: Logic simulation, Fault simulation, Test Generation: Introduction, Exhaustive testing, Boolean difference, Basic ATPG algorithms, Test Generation: ATPG for non stuck-at faults, other issues in test generation.

<u>UNIT - IV</u>

Built-In-Self-Test: Introduction, BIST design rules, Built-In-Self-Test: Test pattern generation, Output response analysis, Logic BIST architectures. Test Compression: Introduction, Stimulus compression, Response compression.

<u>UNIT - V</u>

Memory Testing: Introduction, RAM fault models, RAM test generation, Memory Testing: Memory BIST Power and Thermal Aware Test: Importance, Power models, Low power ATPG, Power and Thermal Aware Test: Low power BIST, Thermal aware techniques.

Text Books

- 1. M.L. Bushnell, V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits" Kluwer Academic Publishers.
- 2. P. K. Lala," Digital circuit Testing and Testability", Academic Press. 1997.

- 1. M. Abramovici, M. A. Breuer and A.D Friedman, "Digital Systems and Testable Design", Jaico Publishing House.
- 2. N. Jha& S.D. Gupta, "Testing of Digital Systems", Cambridge, 2003.

Course	Title		DATA S	SCIENCE		B.Tech CSE - V Sem (Honours Degree)			
Course	Code		Hours/Week	K	Credits	Maximum Marks			
20925	501	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		4	0	0	4	40	60	100	
Mid Exa	m Dura	tion: 90	Minutes			End Exam Dur	ation: 3H	rs	
• Ir • Ir	ntroduce ntroduce ntroduce	R as a pr the math the first	level data sci	ndations re ence algor		ta science			
			alytics probl			ne students will b	a abla to		
Course Co				-		emembering)			
CO 2		-			- ·	y (Comprehensio	on)		
CO 3	Develo	p R codes	for data scie	ence solution	ons (Applicat	ion)			
CO 4	Correlate results to the solution approach followed (Analysis)								
CO 5	Assess	the soluti	on approach	(Evaluatio	n)				
CO 6	Constru	ict use ca	ses to validat	e approach	and identify	modifications re	equired (Cr	reating)	

UNIT-I

R–Programming: Introduction to R, variables and datatypes In R, data frames, recasting and joining of dataframes, arithmetic, logical and matrix operations in R, functions, control structures, data visualization in R basic graphics.

<u>UNIT-II</u>

Linear Algebra: Linear algebra for data science, solving linear equations, Linear algebra – distance, hyperplanes and half-spaces, Eigenvalues, Eigenvectors, statistical modeling, random variables and probability mass/density functions, sample statistics, hypotheses testing.

<u>UNIT-III</u>

Optimization: Optimization for data science, unconstrained multivariate optimization, Gradient Descent learning rule, multivariate optimization with equality constraints, multivariate optimization with inequality constraints. Introduction to data science, solving data analysis problems – a guided thought process.

UNIT-IV

First level data science algorithms: Predictive modeling, linear regression, model assessment, diagnostics to improve linear model fit, simple linear regression model building, simple linear regression model assessment, multiple linear regression.

<u>UNIT-V</u>

Regression Analysis: Cross validation, multiple linear regression modeling building and selection, classification, logisitic regression, performance measures, logistic regression implementation in R, K-nearest neighbors, K-nearest neighbors implementation in R, K-means clustering, K-means implementation in R.

Text Books:

- 1. Introduction to Linear Algebra by Gilbert Strang
- 2. Applied Statistics and Probability for Engineers by Douglas Montgomery
- 3. R Programming for Data Science by Roger D. Peng

Reference Books:

- 1. Data Science, John D. Kelleher, Brendan Tierney, MIT Press.
- 2. R in Action Data Analysis and Graphics with R, Robert I. Kabacoff, Manning Publications, 2011.
- 3. Practical Statistics for Data Scientists, Peter Bruce, Andrew Bruce, O'Reilly Meida.

Web Links:

1. https://nptel.ac.in/courses/106/106/106106179/

Course Title	(Computer Ar Or	chitecture ganizatio		B.Tech CSE - V Sem (Honours Degree)		
Course Code	Hours/Week			Credits	Maximum Marks		
2092502	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
	4	0	0	4	40	60	100
Mid Exam Duration: 90 Minutes					End Exam Dur	ration: 3H	rs

Course Objectives:

- To make the students to understand the structure of computers and internal organization of different units like memory, I/O devices and registers.
- To Study the basic concepts of computer architecture and organization.
- To study in detail about the operation of control unit and Arithmetic unit.

Course	Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand the basic concepts of computer architecture and organization						
CO 2	Understand the design of the control unit and memory organization						
CO 3	Understand the design of Adders, Multipliers and Dividers						
CO 4	Understand the basic concepts of pipelining and Vector processor						
CO 5	Use of memory and I/O devices effectively and to explore requirements of cache						
	Memory and Multiprocessors						

<u>UNIT-I</u>

Basic Computer Organization and Design: Evolution of Computer Systems, Basic Operation of a Computer, Memory Addressing and Languages, Software and Architecture Types, Instruction Set Architecture, Number Representation, Instruction format and Addressing Modes, CISC and RISC Architecture.

<u>UNIT-II</u>

Control Unit: Measuring CPU Performance, Design of control unit.

Memory Organization: Processor memory interaction, Static and Dynamic RAM, Asynchronous DRAM, Synchronous DRAM, Memory interfacing and addressing, Memory hierarchy design, Cache Memory, Improving cache performance.

<u>UNIT-III</u>

Computer Arithmetic: Design of Adders, Design of Multipliers, Design of Dividers, Floating point numbers, Floating point arithmetic.

Pipelining and Vector Processing: Parallel processing, Pipelining, Arithmetic pipeline, Instruction Pipeline, Vector Processing.

UNIT-IV

Input – Output Organization: Secondary storage devices, Input Output Organization, Data transfer techniques, Interrupt handling, Dynamic Memory Access.

<u>UNIT-V</u>

Multiprocessors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration, Inter Processor Communication and synchronization.

Text Books:

- 1. D.A.Patterson and J.L.Hennessy," ComputerArchitecture:AQuantitative approach, 5/E", Morgan KoFFman, 2011
- 2. Computer Systems Architecture M.Moris Mano, IIIrd Edition, Pearson/PHI.
- 3. William Stallings,"Computer Organization and Architecture: Designing for Performance",-Tenth Edition, Pearson/PHI, 2015.
- 4. Carl Hamacher, ZvonksVranesic, SafeaZaky,,"Computer Organization,5/E",Vth Edition, McGraw Hill,2011.

- 1. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.
- 2. Fundamentals of Computer Organization and Design, SivaraamaDandamudi, Springer Int. Edition.
- 3. Computer Architecture a quantitative approach, John L. Hennessy and David A. Patterson, Fourth Edition, Elsevier.
- 4. Computer Architecture: Fundamentals and principles of Computer Design, Joseph D. Dumas II, BS Publication.

Course	Title	APPL	IED MACHI	INE LEAF	RNING IN	B.Tech CSE - VI Sem			
			PYT	HON		(Honours Degree)			
Course	Code		Hours/Week	2	Credits	Maximum Marks			
2092503		L	Т	Р	С	Continuous	End	Total	
						Internal	Exams		
						Assessment			
		4	0	0	4	40	60	100	
Mid Exa	am Dur	ation: 90	Minutes			End Exam Dur	ation: 3H	rs	
Course	rse Objectives:								
• T	Jndersta	and the Ma	achine Learni	ng Basic c	oncepts.				
• (Jndersta	and the need	ed of python i	in machine	e learning.				
• 7	To Analy	yse Superv	vised Learnin	g Algorith	ms.				
Course	Outcon	nes: On su	ccessful com	pletion of	this course, th	ne students will b	e able to		
CO 1	studen	ts will be	able to identi	fy the diff	erence betwe	en a supervised	classificat	ion) and	
	unsupervised (clustering) technique								
CO 2	Unders	Understand Supervised Learning Algorithms.							
CO 3	Identif	y which te	echnique they	need to ap	oply for a part	ticular dataset an	d need, en	gineer	
	feature	es to meet	that need, and	d write pyt	hon code to c	arry out an analy	vsis.		

UNIT-I

Machine learning basics: The need for Machine learning, understanding machine learning, machine learning methods, Supervised learning, Un supervised learning, semi supervised learning, reinforcement learning.

<u>UNIT-II</u>

The Python Machine Learning Ecosystem: Python Introduction, strengths, pitfalls, setting up a python Environment, Why Python for Data science.

Introducing the Python Machine Learning Ecosystem: Jupiter notebooks, Numpy, Pandas.

<u>UNIT-III</u>

Processing, Wrangling and Visualizing data: Data collection, Data description, Data Wrangling, data Summarization, Data Visualization.

<u>UNIT-IV</u>

Machine Learning Algorithms: Introduction to Classification, **Logistic Regression**: Introduction, Types of Logistic Regression, Binary Logistic regression Model, Multinomial Logistic regression Model, **Support vector machine:** Introduction to SVM, Pros and Cons of SVM classifier.

UNIT-V

Classification Algorithms: Decision Tree, Naïve-Bayes, Random Forest. **Case studies**: Analyzing Bike sharing Trends.

Text Books:

- 1. Practical Machine Learning with Python- A problem solver's Guide to Building Real world intelligent Systems, Dipanjan Sarkar, Raghav Bali, Tushar Sharma.Apress publications.
- 2. Introduction to Machine Learning with Python- A Guide for Data Scientists, Andreas C.Miiller and sarah Guido, O'REILLY publications.

- 1. Machine Learning with Python tutorials point.www.tutorialspoint.com
- 2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
- 3. Python Machine Learning by Sebastian Raschka and Vahid Mirjalili

Course	Title	e DEEP LEARNING			B.Tech CSE - VI Sem					
					(Honours Degree)					
Course	Course Code Hours/Week				Credits	Maxim	Maximum Marks			
2092504		L	Т	Р	С	Continuous	End	Total		
						Internal	Exams			
						Assessment				
		4	0	0	4	40	60	100		
Mid Exa	am Dur	ation: 90	Minutes			End Exam Dur	ation: 3H	rs		
Course	Objecti	ves:								
• 5	Study ab	out basic c	concepts of d	eep learni	ng					
• I	ntroduc	e deep lear	ning algorith	nms, te pro	blem settings	and their applic	ations to se	olve real		
v	world pr	oblems.								
Course	Outcon	nes: On su	ccessful com	pletion of	this course, th	ne students will b	be able to			
CO 1	Under	Understand the historical trends in deep learning and use Tensor flow for performing								
	Linear	Regressio	on, Gradient	t Descent	, optimizers,	graph visualiza	ation and	training		
	curves	•								
CO 2	Summ	arize the fu	undamentals	of Artifici	al Neural Net	works.				
~ ~ •	Understand the training of Deep Neural Nets									
CO 3	Onder	stand the ti	aining of De	ep Neural	Nets					
CO 3 CO 4				-	Nets etworks Arch	itecture.				

Introduction to Deep Learning: Introduction, Historical trends in Deep Learning

Up and Running with TensorFlow: Installation, Creating Your First Graph and Running It in a Session, Managing Graphs, Lifecycle of a Node Value, Linear Regression with TensorFlow. Implementing Gradient Descent, Feeding Data to the Training Algorithm, Saving and Restoring Models, Visualizing the Graph and Training Curves Using TensorBoard, Name Scopes, Modularity, Sharing Variables.

<u>UNIT-II</u>

Introduction to Artificial Neural Networks: From Biological to Artificial Neurons, Training an MLP with TensorFlow's High-Level API, Training a DNN Using Plain TensorFlow, Fine-Tuning Neural Network Hyperparameters.

<u>UNIT-III</u>

Training Deep Neural Nets: Vanishing/Exploding Gradients Problems, Reusing Pretrained Layers, Faster Optimizers, Avoiding Over fitting Through Regularization.

UNIT-IV

Convolutional Neural Networks: The Architecture of the Visual Cortex, Convolutional Layer, Pooling Layer., CNN Architectures : LeNet5, AlexNet, GoogLeNet, ResNet.

UNIT-V

Recurrent Neural Networks Recurrent Neurons, Basic RNNs in TensorFlow, Training RNNs, Deep RNNs.

Text Books:

- 1. "Deep Learning" Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press book.
- 2. "Hands-On Machine Learning with Scikit-Learn and TensorFlow" March 2017: First Edition

Reference Books:

- 1. "Neural Networks and Deep Learning", Michael Nielsen.
- 2. "Neural Networks and Deep Learning " Aggarwal, Charu C.Springer International Publishing.

Web References:

- 1. <u>https://www.coursera.org/specializations/deep-learning</u>?
- 2. <u>https://www.coursera.org/learn/introduction-tensorflow</u>?

Course Title	INTRODUCTION TO BLOO TECHNOLOGIES A APPLICATIONS		B.Tech CSE - VII Sem (Honours Degree)					
Course Code	Hours/Week	Maxim	Maximum Marks					
2092505	моос	2	Continuous Internal Assessment	End Exams	Total			
			40	60	100			
Mid Exam Du	ration: 90 Minutes	End Exam Duration: 3Hrs						
Course Objec	tives:							
• Underst	Understand how block chain systems work							
• To securely interact with them								
• Integrate	• Integrate ideas from block chain technology into their own projects							
Course Outcor	nes: On successful completion of	this course, th	e students will b	e able to				
	ammta anankia aon aonta hashina							

CO 3 Understand design principles of Bitcoin and Alternative coins

CO 4 Study on the usecases of Block chain technology.

<u>UNIT-I</u>

Introduction – basic ideas behind blockchain, how it is changing the landscape of digitalization, introduction to cryptographic concepts required, Hashing, public key cryptosystems, private vs public blockchain and use cases, Hash Puzzles, Introduction to BitcoinBlockchain.

<u>UNIT-II</u>

BitcoinBlockchain and scripts, Use cases of BitcoinBlockchain scripting language in micropayment, escrow etc Downside of Bitcoin – mining.

UNIT-III

Alternative coins – Ethereum and Smart contracts, IOTA, The real need for mining – consensus– Byzantine Generals Problem, and Consensus as a distributed coordination problem – Coming to private or permissioned blockchains.

UNIT-IV

Permissioned Blockchain and use cases – Hyperledger, Corda.

UNIT-V

Uses of Blockchain in E-Governance, Land Registration, Medical Information Systems.

Text Book:

- 1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).
- 2. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies

Reference Books:

- 1. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 2. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.
- 3. Nicola Atzei, Massimo Bartoletti, and TizianaCimoli, A survey of attacks on Ethereum smart contracts

Web Links:

1. <u>https://onlinecourses.nptel.ac.in/noc20_cs01/preview</u>

Course Title	BIG DATA & HA	B.Tech C (Honou	SE - VII S rs Degree)	-	
Course Code	Hours/Week	Credits	Maximum Marks		
2092506	моос	2	Continuous Internal Assessment	End Exams	Total
			40	60	100
Mid Exam Dur	ation: 90 Minutes		End Exam Dura	ation: 3Hr	s

Course Objectives:

- To introduce big data concepts.
- To introduce the tools required to manage and analyze big data like Hadoop, NoSql MapReduce.
- Understanding Hadoob.
- Understanding Big data Applications (HBASE, HIVE)
- To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Installation of Hadoop Tools.						
CO 2	Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map						
	Reduce and NO SQL in big data analytics.						
CO 3	Working with HBASE and HIVE.						
CO 4	Achieve adequate perspectives of big data in various applications like recommender						
	systems, social media applications etc						

<u>UNIT-I</u>

Introduction to Big Data: What is Big Data Why Big Data is Important, Meet Hadoop, Big Data Storage and Analysis, Comparison with other systems, Grid Computing, A brief history of Hadoop, Apache Hadoop and the Hadoop Eco system, Linux refresher VM Ware Installation of Hadoop.

<u>UNIT-II</u>

The design of HDFS: HDFS concepts, Command line interface to HDFS Hadoop File Systems, Interfaces Java Interface to Hadoop, Anatomy of a file read, Anatomy of a File Write, Replica placement and Coherency Model, Parallel copying with distep, Keeping an HDFS cluster balanced.

<u>UNIT-III</u>

Analyzing data with unix tools, Analyzing data with Hadoop, Java Map Reduce classes (New API). Data flow, combiner functions, Running a distributed MapReduce Job. Configuration API, Setting up the development environment. Managing configuration, Writing a unit test with MRunit, Running a Job in local job runner. Running on a cluste. Launching a job. The MapReduce WebUI.

UNIT-IV

Classic Mapreduce: Job submission, Job Initialization, Task Assignment, Task execution, Progress and status updates, Job Completion, Shuffle and sort on Map and reducer side, Configuration tuning. Map Reduce. Types, Input formats, Output formats, Sorting Map side and Reduce Side joins.

UNIT-V

The Hive Shall: Hive services, Hive clients, The meta store. Comparison with traditional databases, Hive QI.

Hbase: Concepts, Implementation, Java and Map reduce clients. Loading data, Web queries.

Text Books:

- 1. Tom White, Hadoop, "The Definitive Guide", 3rd Edition, O'Reilly Publications, 2012
- Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Undetstanding Big Data Analytics for Enterprise class Hadoop and Streaming Data", 1st Edition, TMH, 2012.

Reference Books:

- 1. Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.
- 2. Chuck Lam, Hadoop in Action, December, 2010.
- 3. Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press.
- 4. I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.
- 5. Erik Brynjolfsson et al., The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company, 2014.

Web links:

- 1. https://www.coursera.org/learn/hadoop#syllabus
- 2. https://www.coursera.org/lecture/hadoop/introduction-to-apache-hive-0AToF

Course Title	Introduction to Indus	B.Tech CSE - VII Sem						
Course Thie	and Industrial	ΙΟΤ	(Honours Degree)					
Course Code	e Hours/Week	Credits	Maxim	um Marks	5			
2092507	MOOC	C	Continuous Internal Assessment	End Exams	Total			
		2	40	60	100			
Mid Exam D	uration: 90 Minutes		End Exam Dura	ation: 3Hr	'S			
Course Obj	ectives:							
• Introd	uction to Sensors, Communication	and Networkir	ng					
• Introd	ucing Cyber Security in Industry 4	.0						
• To lea	rn Big Data Analytics and SDN							
• To kno	ow about various application doma	ins						
Course Outc	omes: On successful completion o	f this course, th	ne students will b	e able to				
CO1 Und	erstanding various sensors in IoT							
CO 2 Und	Understanding Cyber Security with IIoT							
CO3 Und	Understanding various application domains							
CO 4 Bui	ld skills in Hardware, Software, A	pplication Syst	ems, and Data ma	anagement				

<u>UNIT-I</u>

Introduction: Sensing & actuation, Communication, Networking.

Industry 4.0: Globalization and Emerging Issues, The Fourth Revolution, LEAN Production Systems, Smart and Connected Business Perspective, Smart Factories Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data and Advanced Analysis.

<u>UNIT-II</u>

Cyber security in Industry 4.0, Basics of Industrial IoT: Industrial Processes, Industrial Sensing & Actuation, Industrial Internet Systems.

HoT-Introduction, Industrial IoT: Business Model and Reference Architecture: HoT-Business Models, HoT Reference Architecture.

<u>UNIT-III</u>

Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing, IIoT Communication. **Industrial IoT- Layers:** IIoT Communication, IIoT Networking. Industrial IoT: Big Data Analytics and Software Defined Networks: IIoT Analytics - Introduction, Machine Learning and Data Science, R and Julia Programming, Data Management with Hadoop.

UNIT-IV

Big Data Analytics and Software Defined Networks: SDN in IIoT, Data Center Networks, **Industrial IoT:** Security and Fog Computing: Cloud Computing in IIoT. Security and Fog

Computing - Fog Computing in IIoT, Security in IIoT, Industrial IoT- Application Domains: Factories and Assembly Line, Food Industry.

<u>UNIT-V</u>

Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management. Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Case studies. Self-Referential Structures and Introduction to Lists.

Text Books:

- 1. S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press. Availability
- https://www.amazon.in/Introduction-IoT-Sudip-Misra/dp/1108959741/ref=sr_1_1?dchild=1&keywords=sudip+misra&qid=16273599 28&sr=8-1
- 3. S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.
- 4. https://www.amazon.in/dp/1032146753/ref=sr_1_3?dchild=1&keywords=sudip+misr a&qid=1627359971&sr=8-3

Reference Books:

1. Research Papers

Web Link:

- 2. https://nptel.ac.in/courses/106/105/106105195/
- 3. nlinecourses.nptel.ac.in/noc24_cs95/preview

Course Title	Design and Implemer Human Computer Ir	B.Tech CSE - VII Sem (Honours Degree)			
Course Code	Hours/Week	Credits	Maximum Marks		
2092508	моос	С	Continuous Internal Assessment	End Exams	Total
		2	40	60	100
Mid Exam Duration: 90 Minutes			End Exam Dura	ation: 3Hr	S

Mid Exam Duration: 90 Minutes

Course Objectives:

- Understand the fundamental principles of human-computer interaction (HCI).
- Learn to design, implement, and evaluate user interfaces.
- Develop skills to create interfaces that improve user experience (UX) and usability.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Demonstrate understanding of the fundamental concepts and history of HCI.						
CO 2	Design interfaces that adhere to usability principles and enhance user experience.						
CO 3	Utilize UCD techniques to conduct user research and apply findings to design processes.						
CO 4	Conduct usability tests, analyze results, and iterate on designs based on user feedback.						
CO 5	Apply knowledge of advanced topics such as mobile interfaces, AR/VR, and gesture-						
	based interactions.						
CO 6	Recognize and address ethical issues related to privacy, security, and social impact in						
	interface design.						

UNIT-I

Introduction to HCI: Overview of HCI, history, and evolution.

Principles of User Interface Design: Usability principles, cognitive psychology, affordances, and signifiers.

UNIT-II

User-Centered Design (UCD): User research methods, persona creation, use cases, task analysis.

Prototyping and Wireframing: Low-fidelity vs. high-fidelity prototypes, tools for wireframing, iterative design.

UNIT-III

Interaction Design: Design patterns, user flow, navigation design, error prevention.

Visual Design for Interfaces: Visual design principles, color theory, typography, design systems, and accessibility.

UNIT-IV

Evaluation and Usability Testing: Methods for usability testing, metrics, and data analysis. Advanced Topics in HCI: Mobile and web design, gesture-based interfaces, voice-based interfaces, Emerging technologies (e.g: AR/VR, IoT).

<u>UNIT-V</u>

Ethical and Social Considerations: Privacy and security in HCI, Ethical issues in interface desing, Impact of technology on society and user behaviour.

TextBooks:

- 1. "Interaction Design: Beyond Human-Computer Interaction" by Jenny Preece, Yvonne Rogers, and Gillian Sharp, Wiley publisher, Current edition.
- 2. "The Design of Everyday Things", Don Norman, Basic Books publisher.
- 3. "Don't Make Me Think: A Common Sense Approach to Web Usability", Steve Krug, New Riders publisher.

Reference Books:

- 1. "Human-Computer Interaction: User-Centric Computing for Design", Samit Bhattacharya. (2019), McGraw Hill Education (1st ed).
- 2. "Software Engineering: A Practitioner's Approach", Bruce R Maxim & Roger S Pressman (2019).. (8th ed), McGraw Hill Education.

Web Links:

- 1. Online resources and tutotials on UI/UX design tools
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_cs125/preview</u>

Course Title	Reinforcement Learn	B.Tech CSE - VII Sem (Honours Degree)				
Course Code	Hours/Week	Credits	Maximum Marks			
2092509	MOOC	С	Continuous Internal Assessment	End Exams	Total	
		2	40	60	100	
Mid Exam Duration: 90 Minutes			End Exam Duration: 3Hrs			
Course Objecti						

Course Objectives:

- Learn the theoretical foundations of reinforcement learning (Markov decision processes & dynamic programming).
- Learn the algorithmic foundations of reinforcement learning (temporal difference and Monte- Carlo learning).
- Gain experience in framing low-dimensional problems and implementing solutions using tabular reinforcement learning.
- Learn about the motivation behind deep reinforcement learning and its relevance to high- dimensional applications, such as playing video games, and robotics.
- Discover the state-of-the-art deep reinforcement learning algorithms such as Deep Q Networks (DQN), Proximal Policy Optimisation (PPO), and Soft Actor Critic (SAC)

Course	Course Outcomes: On successful completion of this course, the students will be able to					
CO 1	Describe the core principles of autonomous systems learning.					
CO 2	Calculate mathematical solutions to problems using reinforcement learning theory.					
CO 3	Compare and contrast a range of reinforcement learning approaches.					
CO 4	Propose solutions to decision making problems using knowledge of the state-of-the-art.					
CO 5	Evaluate the performance of a range of methods and propose appropriate improvements.					

<u>UNIT-I</u>

Introduction to Reinforcement Learning and its Mathematical Foundations, The Markov Decision Process Framework, Markov Reward Processes, The Policy, Markov Decision Processes

<u>UNIT-II</u>

Dynamic Programming, Model-Free Learning & Control, Monte-Carlo Learning, Temporal Difference Learning

<u>UNIT-III</u>

Motivation for function approximation, High-dimensional state and action spaces, Continuous state and action spaces

UNIT-IV

Deep Q-learning, Q update through back propagation, Experience replay buffer, Target and Q networks

UNIT-V

Policy gradients: The REINFORCE algorithm, Policy update through back propagation, Proximal Policy Optimization Advanced topics: Soft Actor Critic, Learning from demonstration, Model-based reinforcement learning

Text Books:

- 1. Optimal Control, Linear Quadratic Methods, Anderson and Moore. (1989).
- 2. Optimal control and reinforcement learning, Bertsekas. (2019)
- 3. Predictive control for linear and hybrid systems, Borrelli, Bemporad, and Morari. (2017).

Reference Books:

- 1. Reinforcement Learning, Sutton and Barto (2018).
- 2. Adaptive Filtering Prediction and Control, Goodwin and Kwai. (1984).

Course Title	Ethical Hacki	Ethical Hacking			em)	
Course Code	Hours/Week	Credits Maximun			ım Marks	
2092510	моос	С	Continuous Internal Assessment	End Exams	Total	
		2	40	60	100	
Mid Exam Duration: 90 Minutes			End Exam Dura	ation: 3Hr	S	

Mid Exam Duration: 90 Minutes

Course Objectives:

- Understand the principles of ethical hacking and the role of ethical hackers.
- Learn to conduct reconnaissance and scanning to identify vulnerabilities.
- Master the use of ethical hacking tools and techniques.
- Develop skills in exploiting vulnerabilities and understanding their impact.
- Understand the legal and ethical considerations in ethical hacking.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Explain the principles and practices of ethical hacking.						
CO 2	Perform reconnaissance, scanning, and enumeration of network and application vulnerabilities.						
CO 3	Use various ethical hacking tools and techniques to identify and exploit vulnerabilities.						
CO 4	Assess and document security issues and provide remediation recommendations.						
CO 5	Navigate the legal and ethical aspects of ethical hacking.						

UNIT-I

Introduction to Ethical Hacking: Overview of ethical hacking, its role in security, and ethical considerations, Introduction to hacking methodologies and tools.

Footprinting and Reconnaissance: Techniques for gathering information about a target, Tools and methods for reconnaissance.

Scanning Networks: Techniques for network scanning, Introduction to scanning tools such as Nmap.

UNIT-II

Enumeration: Methods for identifying active devices and services on a network, Introduction to enumeration tools.

Vulnerability Assessment: Techniques for assessing vulnerabilities, Introduction to vulnerability assessment tools.

Exploitation Techniques: Methods and tools for exploiting vulnerabilities.

UNIT-III

Social Engineering: Understanding social engineering attacks, Techniques for manipulating individuals into revealing confidential information.

Web Application Security: Common web application vulnerabilities (e.g., SQL Injection, XSS). Tools and techniques for web application penetration testing.

Wireless Network Security: Vulnerabilities in wireless networks, Techniques for attacking and securing wireless networks.

UNIT-IV

Malware Analysis: Introduction to malware types and behaviors, Techniques for analyzing and mitigating malware threats.

Penetration Testing Methodologies: Structured approach to penetration testing. Phases of a penetration test: planning, testing, and reporting.

UNIT-V

Report Writing and Documentation: Techniques for documenting findings and preparing security reports. Best practices for writing effective reports.

Legal and Ethical Issues: Legal frameworks and ethical considerations in ethical hacking. Understanding laws and regulations related to hacking.

Text Books:

- 1. Ethical Hacking and Penetration Testing Guide, Rafay Baloch, Packt Publishing, Latest Edition.
- 2. The Web Application Hacker's Handbook, Dafydd Stuttard, Marcus Pinto, Wiley, Latest Edition.
- 3. Hacking: The Art of Exploitation, Jon Erickson, No Starch Press, Latest Edition.
- 4. Network Security Essentials, William Stallings, Pearson, Latest Edition.

Reference Books:

- 1. Metasploit: The Penetration Tester's Guide, David Kennedy, Jim O'Gorman, Devon Kearns, Mati Aharoni, No Starch Press, Latest Edition.
- 2. Hands-On Ethical Hacking and Network Defense, Michael T. Simpson, David Kim, Cengage Learning, Latest Edition.

Web Links:

1. <u>https://onlinecourses.nptel.ac.in/noc24_cs94/preview</u>

Course	Title	APPL	JED MACH PY	INE LEAF FHON	B.Tech. AI&ML V Sem (Honours Degree)				
Course	Code		Hours / Wee	k	Credits	Maximum Marks			
20923	901	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		4	0	0	4	40	60	100	
Ν	/lid Exa	m Durati	on: 90 Minu	tes	E	nd Exam Dura	tion: 3Hrs		
Course (Objectiv	ves:							
• U	Indersta	nd the Ma	chine Learnir	ng Basic cor	ncepts.				
• U	Indersta	nd the nee	d of python in	n machine l	earning.				
• T	o Analy	se Superv	ised Learning	g Algorithm	s.				
Course (Outcom	es: On su	ccessful comp	pletion of th	is course, the s	students will be a	able to		
CO1	Students will be able to identify the difference between a supervised (classification) and								
CO2	Understand Supervised Learning Algorithms.								
CO3		•	-	-		rticular dataset ry out an analysi		engineer	

<u>UNIT-I</u>

Machine learning basics: The need for Machine learning, understanding machine learning, machine learning methods, Supervised learning, Un supervised learning, semi supervised learning, reinforcement learning.

UNIT-II

The Python Machine Learning Ecosystem: Python Introduction, strengths, pitfalls, setting up a python Environment, Why Python for Data science.

Introducing the Python Machine Learning Ecosystem: Jupiter notebooks, Numpy, Pandas.

<u>UNIT-III</u>

Processing, Wrangling and Visualizing data: Data collection, Data description, Data Wrangling, data Summarization, Data Visualization.

UNIT-IV

Machine Learning Algorithms: Introduction to Classification, **Logistic Regression**: Introduction, Types of Logistic Regression, Binary Logistic regression Model, Multinomial Logistic regression Model, **Support vector machine:** Introduction to SVM, Pros and Cons of SVM classifier.

UNIT-V

Classification Algorithms: Decision Tree, Naïve-Bayes, Random Forest. **Case studies**: Analyzing Bike sharing Trends.

Text Books:

- 1. Practical Machine Learning with Python- A problem solver's Guide to Building Real world intelligent Systems, Dipanjan Sarkar, Raghav Bali, Tushar Sharma. Apress publications.
- 2. Introduction to Machine Learning with Python- A Guide for Data Scientists, Andreas C.Miiller and sarah Guido, O'REILLY publications.

Reference Books:

1. Machine Learning with Python tutorials point.www.tutorialspoint.com

Course	Title		INTELLIGI	ENT AGE		AI&ML V urs Degree				
Course	Code]	Hours / Wee	k	Credits	Maximum Marks				
20923	902	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		4	0	0	4	40	60	100		
Ν	/lid Exa	m Duratio	on: 90 Minut	tes	Eı	nd Exam Durati	on: 3Hrs			
• G • N • C	Get to use Model Ag Create an	e of langua gent's cont d execute	age models for tributions awar machine hard	or various N areness and lware and s	preprocessing oftware.		ble to			
CO1	Demon	strate the	basic concept	ts, represen	tations, and alg	gorithms for Plan	ning.			
CO2	Develo	p reinforce	ement learnir	ng model fo	or real world pr	oblems.				
CO3	Make use of language models for various NLP tasks.									
CO4	Model	Model Agent's inputs perception and preprocessing techniques.								
CO5	Design	and imple	ement robot h	ardware an	d software.					

<u>UNIT I</u>

Intelligent Agents: Agents and environments, good behavior: The concept of rationality, The nature of environments, The structure of agents.

<u>UNIT II</u>

Classical Planning: Definitions, Algorithms, Planning graphs, Classical planning approaches, Analysis. PLANNING AND ACTING IN THE REAL WORLD – Time, schedule and resources, Hierarchical planning, Planning, and acting in nondeterministic domains, Multiagent planning.

<u>UNIT III</u>

Knowledge Representation: Ontological engineering, Categories and objects, Events, Mental events and mental objects, Reasoning systems for categories, Reasoning with default information, The Internet shopping world.

<u>UNIT IV</u>

Reinforcement Learning And NPL: Introduction, Passive and active reinforcement learning, Generalization in reinforcement learning, Policy search, Applications of reinforcement learning. **NPL**: Language models, Text classification, Information retrieval, Information extraction

<u>UNIT V</u>

Natural Language for Communication, Perception, Robotics: Phrase structure grammars, syntactic analysis, Augmented grammars and semantic interpretation, Machine translation, Speech recognition.

Perception – Image formation, Early image processing operations, Object recognition by appearance, Reconstructing the 3D world, Object recognition from structural information, Using vision.

Robotics – Introduction, Robot hardware, Robotic perception, planning to move, Planning uncertain movements, Moving, Robotic software architectures, Application domains

Text Books:

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence -A Modern Approach", 2/e, Pearson, 2003.
- 2. Nils J Nilsson, "Artificial Intelligence: A New Synthesis", Morgan Kaufmann Publications, 2000.

Reference Books:

- 1. An Introduction to Multiagent Systems (first edition) by Michael Wooldridge. ISBN 0-471-49691-X.
- A Modern Approach, Second Edition by Stuart Russell and Peter Norvig. ISBN 0-13-790395- 2 (especially recommended for students who have not taken CSE 327 at Lehigh).

Course	Title	BUSINESS I	NTELLIGI	B.Tech. AI&ML VI Sem (Honours Degree)				
Course	Code	Hours / Wee	ek	Credits	Maxin	num Mark	S	
209239	903 L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
	4	0	0	4	40	60	100	
Ν	fid Exam Du	ration: 90 Minu	tes	En	d Exam Durati	on: 3Hrs		
Course (Objectives:							
• Ir	troduce the co	oncepts and com	ponents of H	Business Intelli	gence (BI)			
• E	valuate the tec	hnologies that n	nake up BI (data warehousi	ing, OLAP)			
• D	efine how BI	will help an orga	nization and	d whether it wi	ll help yours			
• Ic	lentify the tecl	nnological archit	ecture that r	nakes up BI sy	stems			
• P.	lan the implen	nentation of a BI	system					
Course (Dutcomes: Or	successful com	pletion of th	is course, the s	tudents will be a	ble to		
CO1	Understand t	he essentials of I	BI & data an	alytics and the	corresponding to	erminologi	es.	
CO2	Analyze the s	steps involved in	the BI - An	alytics process	•			
CO3	Illustrate competently on the topic of analytics.							
CO4	Understand &	k Implement the	K-Means C	lustering with	Iris Dataset.			
CO5	Demonstrate	the real time sce	nario (Case	study) by usin	g BI & Analytics	s technique	S	

<u>UNIT - I</u>

Introduction: Introduction - History and Evolution: Effective and Timely decisions, Data Information and Knowledge, Architectural Representation, Role of mathematical Models, Real Time Business Intelligent System.

<u>UNIT - II</u>

BI – Data Mining & Warehousing: Data Mining - Introduction to Data Mining, Architecture of Data Mining and How Data mining works (Process), Functionalities & Classifications of Data Mining, Representation of Input Data, Analysis Methodologies. Data Warehousing - Introduction to Data Warehousing, Data Mart, Online Analytical Processing (OLAP) – Tools, Data Modelling, Difference between OLAP and OLTP, Schema – Star and Snowflake Schemas, ETL Process – Role of ETL

<u>UNIT - III</u>

BI – Data Preparation: Data Validation - Introduction to Data Validation, Data Transformation – Standardization and Feature Extraction, Data Reduction – Sampling, Selection, PCA, Data Discretization.

<u>UNIT - IV</u>

BI – Data Analytics Process: Analytics Process - Introduction to analytics process, Types of Analytical Techniques in BI – Descriptive, Predictive, Perspective, Social Media Analytics, Behavioral, Iris Datasets.

<u>UNIT - V</u>

Implementation of BI – Analytics Process: Operational Intelligence: Technological – Business Activity Monitoring, Complex Event Processing, Business Process Management, Metadata, Root Cause Analysis.

Text Books:

- 1. Carlo-Vercellis, "Business Intelligence Data Mining and Optimization for Decision-Making", First Edition.
- 2. Drew Bentely, "Business Intelligence and Analytics" ,@2017 Library Pres., ISBN: 978-1-9789-2136-8.

Reference Books:

 Larissa T. Moss & Shaku Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle For Decision-Support Applications", First Edition, Addison-Wesley Professional,2003

Course T	Title	DESIGN PATTERNS					B.Tech. AI&ML VI Sem (Honours Degree)		
Course C	lode	Category	H	ours / `	Week	Credits	Maxim	um Mark	S
20923904	04	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	30	70	100
	Mid 1	Exam Duration	1:2 H	ours		Eı	nd Exam Durat	tion: 3Hrs	3
Course O	bjecti	ves:							
• To	under	stand design pa	tterns	and the	eir underl	ying object o	oriented concept	ts.	
• To	unde	rstand impleme	entatio	on of d	lesign pa	tterns and p	providing soluti	ons to rea	ıl world
sof	tware	design problem	ıs.						
• To	under	stand patterns	with e	ach oth	her and u	nderstanding	g the consequen	ices of con	mbining
pat	terns o	on the overall q	uality	of a sy	stem.				
Course O	utcon	nes: On succes	sful co	omplet	ion of thi	s course, th	e students will	be able to)
CO1 I	Know the underlying object oriented principles of design patterns.								
CO2 U	Understand the context in which the pattern can be applied.								
CO3 (Unders	stand how the a	pplica	tion of	a pattern	affects the s	ystem quality ar	nd itstrade	offs.

<u>UNIT - I</u>

Introduction to Design Patterns: Design Pattern Definition, Design Patterns in Small Talk MVC, Describing Design Patterns, Catalog of Design Patterns, Organizing the Catalog, Solving of Design Problems using Design Patterns, Selection of a Design Pattern, Use of Design Patterns.

<u>UNIT - II</u>

Designing A Document Editor: A Case Study: Design Problems, Document Structure, Formatting, Embellishing the User Interface, Supporting Multiple Look and Feel Standards, Supporting Multiple Window Systems, User Operations, Spelling Checking and Hyphenation. Creational Patterns: Abstract Factory, Builder, Factory Method, Prototype, Singleton, Discussion of Creational Patterns.

<u>UNIT - III</u>

Structural Patterns-1: Adapter, Bridge, Composite. Structural Patterns-2: Decorator, Façade, Flyweight, Proxy, Discuss of Structural Patterns.

<u>UNIT - IV</u>

Behavioral Patterns-1: Chain of Responsibility, Command, Interpreter, Iterator. Behavioral Patterns-2: Mediator, Memento, Observer.

UNIT - V

Behavioral Patterns-2 (cont'd): State, Strategy, Template Method, Visitor, and Discussion of Behavioral Patterns. What to Expect from Design Patterns, A Brief History, The Pattern

Community, An Invitation, A Parting Thought.

Text Books:

- 1. Design Patterns by Erich Gamma, Pearson Education.
- 2. Pattern's in JAVA Vol-I By Mark Grand, Wiley DreamTech.
- 3. Pattern's in JAVA Vol-II By Mark Grand, Wiley DreamTech.
- 4. JAVA Enterprise Design Patterns Vol-III By Mark Grand, Wiley DreamTech

Reference Books:

- 1. Head First Design Patterns By Eric Freeman-Oreilly-spd
- 2. Design Patterns Explained By Alan Shalloway, Pearson Education.
- 3. Pattern Oriented Software Architecture, F.Buschmann &others, John Wiley & Sons.